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I. Summary

The research performed under the contract, during the period 14 July 1986 through

13 January 1987, can be divided into two main topics; coupling line source calculations

in 2-D lateral variations of near source structure to analytic teleseismic body wave codes

, and the effects of ocean continent transition zones on L. waves.

In section II, we present a new method for interfacing numerical and integral tech-

niques which allows greater flexibility in seismic modeling. Specifically, numerical calcula-

tions in laterally varying structure are interfaced with analytic methods that enable pro-

pagation to great distances. Such modeling is important in studying situations contain-

ing localized complex regions not easily handled by analytic means. The calculations

involved are entirely two-dimensional, but use of an appropriate source and then a filter

applied to the resulting seismograms produce synthetic seismograms which are point

source responses in three dimensions. The integral technique is called two-dimensional

Kirchoff. Data from Yucca Flat, Nevada Test Site (NTS) are modeled as a demonstra-

tion of the usefulness of the new method. In this application, both local and teleseismic

records records are modeled simultaneously from the same model with the same finite-

difference run. The application documents the importance of locally scattered Rayleigh

waves in the production of teleseismic body wave complexity and -coda.

In section III, the effects of the length of the intermediate path between the con-

tinent ocean and ocean continent transition regions is investigated. First the results of

two FE calculations with different intermediate path lengths are presented and com-

pared. These examples are contrasted with the path length used in the previous report.

Then the RT integration method is discussed and explained. First analytic expressions

for the stress components of double couple and line sources are derived, then the expres-

sions for displacement and stress line source Green's functions are determined. These

expressions are used to illustrate the validity and determine the accuracy of the RT cou-

pling method. The RT coupling method is then used to continue the propagation of FE 0

results through a layered structure using the displacement and stress Green's functions

for the remaining path length and the displacement and stress time histories recorded at

a column of element centers within the FE grid. The total attenuation of L. due to pro-

pagation through a 2-D transition of continent to ocean to continent is found to be at

most a factor of four to six. This is inadequate to explained the observed attenuation of

L.. Thus, additional effects, other than geometry must be considered to provide a com-

plete explanation of the attenuation of L0 .
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ABSTRACT

A new method for interfacing numerical and integral techniques allows

greater flexibility in seismic modeling. Specifically, numerical calculations in

laterally varying structure are interfaced with analytic methods that enable pro-

pagation to great distances. Such modeling is important in studying situations

containing localized complex regions not easily handled by analytic means. The

calculations involved are entirely two-dimensional, but use of a appropriate

source and then a filter applied to the resulting seismograms produce synthetic

seismograms which are point source responses in three dimensions. The integral

technique is called two-dimensional Kirchhoff because its form is similar to classic

three-dimensional Kirchhoff. Data from Yucca Flat, Nevada Test Site are

modeled as a demonstration of the usefulness of the new method. In this applica-

tion, both local and teleseismic records are modeled simultaneously from the

same model with the same finite-difference run. This application documents the

importance of locally scattered Rayleigh waves in the production of teleselsmic

bodywave complexity and coda.

I,.
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Introduction

Seismologists have long recognized that structural complexities near seismic

sources may affect teleseismic waveforms. For instance, events occurring in the

Imperial Valley, California produce extended teleseismic short period signals last-

ing much longer than expected from near-in strong motion studies, see Hartzell

and Heaton [1982]. Presumably, the energy trapped by the low-velocity layering

scatters out the bottom of the basin when it encounters the basin edge.

Recently, Vidale and Helmberger [1987a], using a finite-difference scheme, had

considerable success at modeling a profile of the San Fernando earthquake strong

motion records that cross the Los Angeles basin. Their approach assumes two-

dimensional symmetry, as displayed in Figure 1, but corrects for three-

dimensional spreading and mimics the well known double couple radiation field.

Essentially, the numerical excitation is matched to an asymptotic analytical

source representation. Synthetics generated by this procedure match closely

those generated by analytical point source codes for the same flat layered case

[Vidale, et al., 1985]. However, these solutions cannot be propagated to great dis-

tance because of computational efforts. Thus, a technique is needed to interface

the numerical field back into an analytical scheme such that the signals can be

sent to large distances. This is the basic objective of this paper, and we will also

discuss, as a demonstration, a well controlled experiment where scattered surface

waves can be seen leaving the local field to reappear as teleseismic body waves.

The most controlled experiment consistent with the above motivation above

is that of explosions fired at Yucca Flat in the Nevada Test Site. The local struc-

ture of Yucca Flat is a basin containing volcanic tuffs and alluvium [Eckren, 1968

and Houser, 19681. The events in this area have a striking complexity on telese-

ismic records for an explosion source (see Figure 2). Various studies show the

structure of this region to be seismically complex [Taylor, 1083, among many oth-

ers]. Hart, et al. [1979] examine the variation of amplitudes and magnitudes

within Yucca Flat dependent on source position in the valley. Recent studies

have concentrated on the azimuthal variations observed in the data in both the
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time [Lay, Wallace and Helmberger, 1984] and frequency [Lay, 1986a] domains.

Studies of these records have indicated the presence of local scattering structure

[Lay, 1986b]. In addition, existing strong motion records demonstrate lateral

anomalies in the propagation of seismic energy at Yucca Flat. Figure 3 shows

the vertical velocity records from the event FLASK. The large difference in

amplitude and duration of both the first arrivals and the Rayleigh waves from

east to west strongly suggests that scattering plays an important role. It is found -

herein that these scattered Rayleigh waves are the likely progenitors of telese-

ismic complexity apparent in Figure 2. This is consistent with the results of

Lynnes and Lay [1987], published in this issue.

A Two-Dimensional Representation Theorem

In accordance with the motivation discussed above, we derive a two-

dimensional representation theorem method similar in its application to three-

dimensional Kirchhoff integration. Such an integral method allows computation-

ally inexpensive generation of teleseismic records from complex source region cal-

culations, particularly those of finite difference. In deriving such a method, the

resulting expression must be fully elastic, require a minimum of computation Z,

time, and be readily adaptable to finite-difference methods. A straightforward

approach is to parallel the derivation of three-dimensional integration methods.

For more information on such integral methods in both two and three dimensions

see Baker and Copson [19501 and Mow and Pao [19711. .

Starting with the two-dimensional elastic wave equation in polar coordinates,

82w 8 __ (+) ".

ar2 r r r2 852 a2 2 8t12

take the Laplace transform over time, ignoring the 9 - dependence, and setting

V=0, - -o, at 1=0, for all r, 0. Then, -

a,"

Tr 1 -0 (2)
r r r 02  

%-,
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which has solutions like K,, se Hudson 19631 for example.

Thus, i" depends only on r and solves

Let w be another solution of the Equation 2, then Green's transformation

becomes

fr 9W ) dlff( W VI)dA (3)

rffD I U 2 W W2

=0.

The geometry for this transformation is shown in Figure 4. Now let

W =KoI-I. Then forP D,

rL[. ITl 11 l7 ]
d O-Kol-- ] ----0. (4)

For P E D, as in Figure 5, the log singularity at P for KO gives the result

fria an ff *CV2 W dc=) ffdA 0w2 (5)

Let a = -7/r in the integral over a, then

fkw '7 dl Caf w de (6)

where dc is a length element on the circumference of the inner circle. Again, let

w-- K 0, and also let the radius, e, of a go to zero.

Jr KOt~ KD IM)2j j dt -= imJ [%-LKo1-M -K 0 IJOIA2:] dc (7')

*%
5

u
5

7n a . a an, 4%-0 ar a%5 ~~m a ar.
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Near P, K0 can be approximated as follows.

KOfj -'r jHcP11!~ l og r (8)

If these approximations are substituted into the Equation 7, the integral over a is

evaluated in the limit.

lim f _a Ko -- -Ko "21 dc lim - loge - dc

41-0 'L[ r0 IaJ a arC0 7 a

-- 2wF(P) (10)

Therefore,

21r rr an

This integral can be exactly inverted to the time domain. First, take the
4J

derivative of Ko.

aKoIJ --- K,{-r j (12)

Substitute this into the integral.

;-) - L.i-K,,, -r + -1Ko-)I dl (13)

Take the inverse transform.

f 1 fr * W r + L
r40 2r1 a an a an a

?-6 Go

f fiLrT.., } +a Br K7 I Lo dl .d (14)
er r 21 i an a an a n

Inverting the above integral requires the use of the convolution rule, the
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derivative rule and the inverse transforms

L-(Ko(bp)) [b >01 = (t2 --b)-'/ 2 H(t-b) (15)

L'(Kl(bp)) lb >01 _ (g2 h2)-,/2 H(t-b ). (16)

Now, taking the inverse,

EL r- A : rl/))d tjr a)- ]E-2w a an- " 4Vr-(r /.) af +r ( --

For simplicity, let f( ) .- (t 2-(r /a)-'/H(I -(r /a).

(P) - L ,[-L t-- AA ' )+ -. () di (17)
2j ranBea

Equation 17 may be cast in a form similar to that of conventional Kirchhoff

methods. First apply the convolution identity f(t)o(t+e)-f(t+c)*o(t) with

Cr -

.(,r)f (1)) +~! (t)] dt21rP = ran dt a an I

where u is now s(7), r7 -t-r/a, the retarded time, and the operator

f(t) . Rewriting this,

r 1

U (P) -- -Lf [f()[ LN+ + (t-f(/aL i

2ra a a at r) an at

Bring the derivative across the convolution in the last term.

O+ S rO, 1 + I H(t) V-.,j .H.td)

It,(P) = - f (0)1 taa L+=/ di" ¢+=/

Rearranging terms and taking the last time derivative, .

aI (P) -L____A
Ir fr [f 0t + +r I rI f (1 ) r'p' l~) - +-dl-- * ____ at

an 2r an anat 2; + 2r /a 2r an

(18)
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This equation is an exact form of the representation theorem.

It is useful to consider an approximation of Equation 18 for large r. The

main reason for considering this is that f(t) depends on r and therefore the con-

volution, which is computationally expensive, cannot be moved outside the

integral. For large r, the operator f(t) is dominated by i/'t, that is

S f() )H (t+ )T(2r/a ')3 2 .
t+ 2r/a

Equation 18 then becomes

(P) VCif [ IlB J uLv + Bi.L + Lar

- rW 77 r aa ran aana

The second integral is similar to the second term in the first integral, except that

it falls off as 1/r with respect to it. This means that the second integral may be

ignored at large r.

[ [I ( au +~ _L L~ru
(P)- T v1_27 _7i an 2r an aan at

This approximation also arises from using the asymptotic form of K0 before

inverting the transform. That is,

Ara±~. . (20)

Substitute Equation 20 into Equation 11, taking the appropriate derivatives, to

get

__ =__ [V I L+dL L% (21)

This may be inverted using the shift rule to account for the e , and

- 0



1/%/", to arrive at

1 1a + + ~ A ru l
(P)- T 7 2 7 77' +r On 2ron a an at .

Once again, v is a function of retarded time r t - r /a, this time due to the

application of the shift rule.

It is interesting to compare Equation 19 to the more familiar point source

Kirchhoff formula from optics [see, for example, Baker and Copson, 1950].

(P ra udS (22)4v f'). I un "T -ar'an at r an

which can be written

V"(P) - -L ff + I nt +  - L 'T (23)

Comparing Equations 19 and 23, the form is identical between the integrals,

except for a factor of two on the second term. The convolution with i/VT and

the difference in scaling with distance are expected for a line source as opposed to

a point source. Both integrals can be applied in similar ways. Given a two-

dimensional problem, the method of choice should be the line source integral.

An analytic verification of these formulae in a whole space demonstrates the

operation of both the three-dimensional Kirchhoff formula and the two-

dimensional integral just derived. The verification of the three-dimensional Kir-

chhoff formula is similar to that of Hilterman [1975] who set up a reflected case.

The setup of the problem is given in Figure 6, where a plane (S) is assumed

located equidistant between the source and receiver (that is, r0,=). Conceptu- 7.

ally, the source lights up the surface, and the surface reradiates the energy to the

receiver. In this case, the transmission coefficient is unity so that only geometri-

cal effects are tested. Starting with the integral in Laplace space,

ap_- I ±s) i2r.L ± 2 ±- I dS (24)
41rJS~ rOn r2 anc r cOnj

le.

, % "
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In this example, oKP) is the potential at the observation point, and O(s) is potential

on the interface S. For a symmetric point source,

OS) C (-, (25)
ro

Applying the chain rule to a'")
an

("(s) . "(s) ±o 8-L+--. o. (28- - - + - -(s) 2B
an 870 an a Joan (8

Substituting Equations 25 and 26 into Equation 24 yields-Le -.[_.L L.L_+_, .Lr..2o ~d ,(27,)
;(P)- T(o) r ,oIT 870 1-8+' e1],qs (27)

Let to-r, aro r and d fl---&i-TdS, where fl is solid angle. Then

et=2r/a, to-2r/ and r2 a

- jr a r' iLet -r/,t-r/an n d.

;(P) = T.)-- .-+-L) .nd,2 w a t d t

Invert to the time domain.

L2n. + n "

O(P) - L _,d-- f (l) (28)

The solid angle swept out over the surface as a function of time is

n(t)-2r I - t ) H(t-to)

d2O/ -to-=2ir-jH(t-o

= 2r (t -to) - 41r-joH(t -o)dt. 3

-- I

:2.'w'..'' .. :'2,~f2 ",. '2.r2' .' L, , ._'_'_ "•.... . . ,=-, .- .. -.. .. %.w'- ',.w' ,''2 w..,.e ,,S



Using these expressions, Equation 28 becomes

I21r- -(t-to) -4zr- H(t-to) + -2,.= H~t-to) -Ait)

= 1 2O.
VI 2ira 1* t '

1toa t -to) "f(t)
ai

I f(t-to)
T t o

= fIf(t-to) (29)

This is the familiar geometric spreading law for a point source.

The same analysis can be performed in two dimensions (see Figure 7). The

approximate form of the integral, as given in Equation 19, is used because the

form is more like that of the three-dimensional case, and the analysis is more

straightforward. For an appropriate correspondence, replace a inside the integral

of Equation 19 with O(r), the potential on the contour r. As above, starting with

the Laplace transform of the integral (Equation 21), use the approximate form of
I-

the source (see Equation 20). ',

#(r) - 7" =O As (30)

84,(r) T '1 (31)
-a. 7 27g ,o -T}))

Substitute these into Equation 21 to obtain

r_ ____t vOt-c- L + Lr- -L _L a2Id1 32
(P) -y 72-a 2r an a 2r Jn (32

tr _ ar and d=1±41, where 9 measures the angle from vertical,
Let _n-, a a. -a.

as indicated in Figure 7. Then 
q-=

(P) P
4 or

N :vv .v , ~ ~ -C -C %C~~~ ~ ~ ~ ~ . V C C C. %/ ~ '
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--- /{° ta 2rJ

Let £=2r/a, to=2r o/a and d "--- .d.
dt

j(P) - T($.L f 9.1 { .+-L) ",

Invert to the time domain.

#(P) - I LO" + f"LL-dr H(t-to)eI(t) (33)
0

The total angle swept out over the contour as a function of time is

O(t )=2cos - I L -to)

d O 2 to If(t-to)d 2 t r =_

Using these expressions, Equation 33 becomes

to H(t-to) I to H(t-to)
- --fA - dr JH(-0) ()

'°'(-'+ f r"7

10 0

0 ' ) '
to 1 + to d J H(t-to)(t) ""

to H( t- to ) "f (t) '(-

0

t H (i - to) If (t )

to V O 2- '

IqJ~a, **%a ** ~ " ..

,,,,, ¢;¢ /',e %,% ,'., ,- , , ; . o;..; . ; ¢.2., ;.....,.- .%.: ,..-.,,:...-..-. --.. , -. :.../.-. , .... ,,>-°
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Now, let t--to.

H (t -to) (34),(p) - ./(t) (4

This is the familiar equation for line source response. Note that in the three-

dimensional point source case, df/dt-0 until t-t 0 , and then jumps to 2ff/to at

t -t 0 , gradually decreasing with time thereafter. An interface with structure

behaves in a more interesting manner, see Scott and Helmberger [1984]. In two

dimensions, d 9/dt has a square root singularity at t -t 0 . In the three-dimensional

extension of this case, the response at t-to represents the integrated energy

arriving at the receiver from an infinite strip represented by the first line element.

It is the integration over this infinite strip in and out of the plane of Figure 7

that creates the singularity.

The simplest application of two-dimensional Kirchhoff is to a medium of

constant velocity set in Cartesian coordinates, with part of the contour, r, paral-

lel to one of tlie axes (Figure 8). Choosing a boundary paralleling the z-axis in

an (z ,z) system and extending to infinity in both directions, the contour r may be

closed at r- oo in the direction z- +oo. As r- oo, the integral over this closure

of r vanishes. The point P becomes the receiver location, and all sources are out-

side the contour. The vector T has its origin at P and is the distance to r. From

this information, A = -i on the straight boundary, .L -- 1 and -- - a For

this case, the integral from Equation 19 becomes

[(P) +''".f v 3 + _ t dl. (35)

For computation, the integral must be discretized to a finite sum. Assuming that

the contributions from the ends of the boundary are small,

"(P) 9 z 8(

where h is the spacing between discrete line elements. If the coordinates of P are
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sp, sp, and the coordinates of the first line element are z*, z,, then z-zp-zl,

jzp-z-,-)h and rj- 1 jz.

The above geometry is developed specifically for application with finite-

difference techniques. For the acoustic case, the wave field v becomes pressure

(or dilatation, e), and Equation 36 is directly applicable. For the elastic case,

some modifications must be made. Assuming continuous material properties

across the boundary, the compressional and shear wave fields may be separated.

Separating these fields following a fully elastic finite-difference calculation

requires the taking of the divergence and curl of the full wave displacement field

for the compressional and shear components, respectively. This can be seen from

the potential form of the vector displacements, j =V +vxk. First, take the

divergence, V4 -- vo, and take the curl, Vx, = vxvxj. Take divergence

and curl, respectively, a second time. Two equations now exist, one in which u is

identified as the second spatial derivative of the compressional wave field with

velocity a as the p-wave velocity, and a second in which v is identified as the

second spatial derivative of the shear wave field with velocity a as the s-wave

velocity, P. Returning to the wave equation, the reason for the second derivatives

becomes evident. The wave equations for the second derivatives of displacement

are

2 at ,

2 1 a!

f a 82

Identifying the wave field v in Equation 1 as the second derivatives of the vec-

tor displacements , and j., the wave equations allow the second spatial deriva-

tives of aX,(P) and &.(P) to be equated to second time derivatives, that is accelera-

tions. Thus, Equation 19 becomes two integrals, one for the p-wave field and &

another for the s-wave field, in each of which the required inputs are spatial

derivatives of displacement (calculated in the finite-difference code), and the out-

puts are accelerations.

V j~"%.~ f% .. d.%9. %~V. S~~ \
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Normally, when calculating a teleseismic record in this manner, elastic or

acoustic, a point source in three-dimensional geometry is the response desired. I

An appropriate approximate conversion, derived in Appendix A, is

2 1 d (A.28)IR. , 7 T-7 :7 _du. tA. U

Here, z is the horizontal distance (as in the above derivation), and R is the total

distance (vrzT_ ' ) from the source to the receiver. This conversion assumes

cylindrical symmetry about a vertical axis through the source. If it is applied

directly to Equation 36, the result is as follows.

N

(Ps- 2 dI I +t1
,(!,) ._, ,+ •21r ~~~- 72 "v--". + 77T -77-riaa

This equation can be simplified by recognizing that

T 77 ir().(t)'Ft
== , t ).*F (t)

= i.r(*)

Then

AN
-- ) -Lv + z2 + -- .v (37)rR_ + V. '7- -, .,2i ia t4

This conversion assumes the original line source radiation pattern was appropri-

ately adjusted for conversion to point source, as discussed in Appendix A.

Many assumptions are made in the above derivation. While the

justifications given are reasonable, some simple tests of the method against other

analytical methods is useful. Suppose we examine a simple half-space with a

point source at a depth of I km in an elastic half space with p-velocity 4 km/s,

s-velocity 2.3 km/s and density 2.7 g/cc, and receivers at a depth of 6 km and a

variety of ranges. A comparison of the new method, finite-difference and

• o,

r %,
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Cagniard seismograms is shown in Figure 9. The seismograms shown include an

RDP source convolved with a Gaussian. The Gaussian is necessary in the finite-

difference scheme to limit the bandwidth of the source to a range in which propa-

gation is stable. The Gaussian is normalized to have an integral of unity. The

records shown are all velocity records, representative of the response of a broad

band strong motion instrument. The response at the surface for finite differences

and Cagniard are compared in Figure 10, demonstrating the usefulness of finite

differences in modeling strong motions.

The synthetics for small ranges have not been included in either Figure 9 or

10, because the line to point source mapping approximation breaks down at near

vertical take-off angles, see Appendix A. The parameter k, used in the mapping,

is fixed at 0.6 throughout this investigation, because it seems to give good agree-

ment to other synthetic methods (Figures 9 and 10) at the take-off angles of

interest in this study.

Canonical basin models

Having demonstrated, briefly, the accuracy of the finite-difference and two-

dimensional Kirchhoff methods, it is now appropriate to examine some canonical 1 -4

models of basins, to understand what effects various geometries may have. Four

models of basin boundaries are shown in Figure 11; they are variations of a layer

over a half space. The half space parameters are p-velocity 4.6 km/s, s-velocity

2.7 km/s, and density 2.7 g/cc; and are representative of crystalline rock. The"0

layer parameters are chosen to give a p-velocity ratio of one to two, with the

other parameters appropriate for a sediment with that p-velocity; p-velocity 2.3

km/s, s-velocity 1.1 km/s, density 2.0 g/cc. The source is fixed 3.75 km from the

basin boundary at a depth of 0.75 km in each case. Surface strong motions are

computed at one km intervals from the source to the edge of the model and com-

pared with the uniform layer over a half space model. Examination of the strong

motions in Figure 12 shows some of the differences between the four basin termi-

nation models. Both of the sharper basin terminations pass more energy across
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the termination; the gradual terminations allow waves of only about half the

amplitude to pass across. Nevertheless, all the models of basin termination cause

large drops in amplitude as the wavefronts cross the boundary. Part of this

energy is reflected back across the basin (this energy cannot be corrected to three

dimensions properly and will have higher than its true amplitude, especially as it

approaches the source position), but much of it is scattered to teleseismic dis-

tances. The surface waves are not well-developed here because there is no low-

velocity surface layer to reduce the direct wave and enhance amplitude and dura-

tion of the Rayleigh wave. The primary conclusion to be drawn from the strong

motions is that gradual basin terminations will have the greatest effect on energy

crossing that boundary, but that all large contrasts across great changes in basin

depth will cause large reductions in transmitted strong motion amplitudes.

Now, using the two-dimensional I(drchhoff technique derived above, the scat-

tered energy may be examined at teleseismic distances. Figure 13 shows the

teleseismic p-wave seismograms computed at a distance through the half-space of

1000 km from the source. These displacement records include the RDP source, a

WWSSN short-period instrument response and attenuation with T ° of one. The

seismograms are all normalized to the flat-layer response (ie: the response if the

model at the source were extended laterally without termination). The distance

of 1000 km is sufficient for these half-space teleseismic calculations because it is

two orders of magnitude greater than the length of the integration contour, and

therefore the waveform will no longer change with distance, only the amplitude

will change by geometric spreading. This will be discussed more fully later.

Differences in the synthetics for the various models consist primarily of small

amplitude changes at the frequencies involved here. Even broad band responses

do not show large changes in teleseismic records (Figure 14). This indicates that

at teleseismic distances, for explosions, velocity contrast at the boundary and the

overall dimensions of the boundary are of primary importance, not the precise

shape of the boundary. On the other hand, increasing the amplitude and dura- ,p

tion of the surface wave before it interacts with the boundary increases the U

-IPPe'", '"'22, , :.. +" ¢2 " ':-'"" : : ' ";"''2'? ":"*'+, +",s
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overall effect on the teleseismic waveform and increases the variation with boun-

dary geometry, as we will show later.

Some of this scattered energy is also found as teleseismic sv-waves. Figure

15 shows the s-wave responses at the same teleseismic distances. These waves are

of the same order of magnitude in amplitude as the scattered p-waves. Also,

because they are not dominated by P and pP (pS is small at near vertical take-off

angles), they show a great deal more variation with the type of boundary chosen.

Such high amplitude scattered sv-waves could complicate the analysis of sources

such as earthquakes which generate direct s-waves, but these waves could be

important when studying explosions, which can only generate sv-waves through

structural interaction.

In demonstration of how two-dimensional Kirchhoff constructs the telese-

ismic waveform, Figure 18 shows a series of synthetic velocity seismograms at

four take-off angles (5, 10, 15 and 20 degrees) for five cases in which more of the

line elements along the contour are included in each subsequent calculation.

That is, case 0 includes contributions from the single line element at 17 degrees

take-off angle. Case 1 includes the two nearest neighbors, case 2 includes 11 ele-

ments, case 3 includes 25, and case 4 includes all elements. Up to case 2, the P-

pP arrivals increase by addition of energy from a narrow range of angles provid-

ing energy propagating away from the very near vicinity of the source. Energy

scattered from structure is not propagating in the direction of the receivers over

this portion of the contour. The elements used in case 2 should include most the -4

energy for the P-pP arrival, and remaining contributions to that phase are small,

as seen by comparing peak amplitudes in the remaining cases. Case 3 is the first

to include significant energy from scattering. Notice that the contour elements-"

included in case three contain all contributions from the basin boundary up to 20 *.4.

degrees take-off angle. For this reason, the contributions from the remaining ele-

ments are small and the records for case 4 differ little from those of case 3.

| !
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Figure 17 demonstrates the effect of distance on the resulting seismograms.

At the smaller distances of 5 and 10 kin, cases 0 and 1, the contribution from

scattering propagates at a greatly different angle than the energy from the source.

For receivers below the source, the scattered energy is small because it is pro- h

pagating backward off the scatterer. Further from the source, at distances of 100

and 1000 kin, cases 2 and 3, there is little difference between records at different

distances because the take-off angles from the source and the scatterer become

indistinguishable. Source and scatterer become one. These synthetic seismo-

grams contain only the p-waves; if the s-waves were included, the records at 5

and 10 km would become very complicated and would differ greatly from those at

teleselsmic distances.

Application - Events at Yucca Flat, NTS

Since near source structural interaction causes variations in teleseismic

waveforms due to surface wave interaction, records of this scattering are likely to

be quite common. Yucca Flat at NTS, Nevada is one example of a structure that

may generate these effects. The lateral variation in the Yucca Flat area is due to

the basin structure of the valley. Sources at NTS are typically located near the

center of the valley, three to five kilometers from the basin termination. As

shown in the canonical models of basins above, this situation will cause strong

interaction of the surface wave with the basin boundary. At the surface, the

amplitude of the surface wave will be reduced and the frequency content will

change as the wave encounters hard rock.

As discussed above, the two-dimensional methods used in this investigation

produce a three-dimensional response from point sources. The conversion derived

in Appendix A requires that the source used to drive the finite-difference scheme

include higher order (non-isotropic) line source terms [Vidale and Helmberger,

19861. For an explosion, these terms have radiation patterns such that the

response is correct only from half the source. In the modeling below, the struc-

ture in the invalid direction is restricted to flat layers. The result of this

V.. - . . , . -
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modeling is a structure which is locally cylindrical, because the response in and

out of the plane and in the invalid direction is flat layered and has no effect on

the seismograms produced.

Figure 18 is a map of Yucca Flat that shows the outlines of the hard rock

outcrops which approximately mark the the basin boundary. Also displayed are

the various event locations and a network of strong motion recorders for one

event (FLASK). Note that the locally cylindrical geometry is appropriate here,

especially in the direction of the WWSSN station MAT, Japan. The line AB

marks the location of a cross-section shown in Figure 19. The cross-section is a

view looking south, and the positions of various sources and receivers used in this

study are shown. The dashed line is the integration contour for the two-

dimensional Kirchhoff. There are three materials in this model: low-velocity

alluvium, volcanic tuffs, and hard rock (Cretaceous granites and Paleozoic rocks).

The large differences between the velocities of these materials is what makes

lateral variation important.

The local cylindrical symmetry of the resulting model is shown in Figure 20.

The source falls on the axis of the cylinder, and the line source to point source

conversion is valid only in the direction of the basin boundary. The seismograms

generated for the source positions indicated are responses for this three-

dimensional geometry.

Figure 3 shows some of the strong motion data from the FLASK event.

Both the locations of the receivers and the location of the event are shown on the

map of Figure 18. The data shown in the figure are vertical velocity records from

stations three to four kilometers from the event. The basin becomes shallow

between the source and the position of the westernmost stations, creating a

geometry where the stations closest to the source see a distant basin boundary,

while those to the west see a basin boundary directly below. In the figure, the

differences between the two directions is readily apparent. To the west, the

amplitudes of surface waves are reduced by roughly half with respect to those to
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the east. It also appears that the longer period surface waves are reduced more

than shorter period waves. It will be shown that the energy lost from the surface

waves is converted to body waves and is found on teleseismic records.

Some strong motion synthetics for a source at position 1 are shown in Figure

21. Notice that as the Rayleigh wave encounters the basin boundary, the ampli-

tude becomes roughly half and the longer period surface waves are greatly

reduced. The source parameters mentioned in the figure are used in a Helm-

berger and Hadley [1981J reduced displacement potential. This RDP source is

approximately that expected for FLASK and similar events in Yucca Flat, and is

used throughout this investigation as a representative source description.

Direct comparisons of various source-receiver pairs and the data are given in

Figure 22. The data have more energy in the higher frequencies due to limita-

tions of the finite-difference method. Finite grid spacing results in a maximum

frequency which can be propagated accurately. Therefore, the source used is con-

volved with a Gaussian window to remove higher frequencies. Nevertheless, the

absolute amplitudes and many of the primary features of each record are accu-
0p

rately modeled. The record for station 795, is best modeled by a source at posi-

tion 2 (out of positions 0 through 3 spaced one kilometer apart) at a distance of

three kilometers. This is one of the better waveform fits produced by the model.

Station 791 is best modeled by a source at position 3 (closest to the basin boun-

dary) at a distance of 3.5 kilometers. Stations 791, 793 and 795 are north and

east of the event. This is the range of directions, as argued from the map of Fig-

ure 18, which is most like a locally cylindrical geometry. Station 789 is to the

south. Here, the basin boundary is further from the source. Thus, source posi-

tion 0 gives the most accurate result.

Now the two-dimensional Kirchhoff may be applied to see if this model is

consistent also with the teleseismic data. Figure 2 shows the data set to be con-

sidered here. These are short period WWSSN records recorded at station MAT, 0

Japan. Seven different events from various sites within the valley are shown. Ie

•S
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Notice the additional energy arriving after P-pP. This energy is present at very

large amplitudes on all records except PORTMANTEAU. PORTMANTEAU

occurred at the basin boundary to the northeast and therefore may be considered

primarily a flat layer case. Note also that while P-pP is similar for all the events,

the later phases vary substantially as a function of position. Yet when sources

are close together (KEELSON and OSCURO), differences are small.

Figure 23 shows some of the two-dimensional Kirchhoff results. These are

point source displacement records and have been convolved with a WWSSN short

period instrument response and a Q-operator with T*=1. Take off angles of 150

and 200 were chosen to bracket that appropriate for MAT (17.80). All amplitudes

are relative to the flat layer case at a take-off angle of 0" (the flat layer record

shown is at 150). The important observation here is that the records vary far

more by moving the source one kilometer within the basin than by changing the

take-off angle by five degrees. The energy which causes the waveform variations

comes from the conversion of surface wave energy at the basin boundary. Figure

24 shows a direct comparison of the data and model. KEELSON and OSCURO

are modeled accurately by the same synthetic record, demonstrating repeatabil-

ity, and the flat layer comparison with PORTMANTEAU is good as expected.

Discussion and Conclusions

This paper presents a new method for calculating teleseismic waveforms,

using an interface of numerical and analytic computations. As presented, the

two-dimensional Kirchhoff method relies entirely on local structural effects to

change the teleseismic waveform. This method can be made computationally fast

and efficient. Using anisotropic sources and filtering the resulting seismograms

produce three dimensional, point source records. The finite-difference calculation

produces both surface strong motion records and the functions needed for the

teleseismic synthetics. In this way, a model of local structure can be compared

with both local and teleseismic data simultaneously.
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In this paper, we concentrated on the local structural effects in modeling

teleseismic waveforms. More realistic path effects can be included in the calcula-

tions by modifying Equation 39 using a convolution with an appropriate kernel

computed by various analytical ray techniques. Such interfacing would be useful,

for example, in modeling the complexities observed by Lynnes and Lay [1987]

(also on this issue). This problem will be addressed in future publications.

The case for using only local structure in the teleseismic calculation is strong

for Yucca Flat because the local strong motion and teleseismic data are modeled

simultaneously. Only the local structure need be considered to make a good syn-

thetic strong motion seismogram. If a local structure models well both the strong

motion records and the teleseismic records then the effect of local structure on

the teleseismic waveform is substantiated. A relatively simple model of the basin

at Yucca Flat produces synthetic seismograms which match very well those

observed at teleseismic and local distances. Several features of these records are

explained. The variation of surface wave amplitude with azimuth is shown to be

the result of interaction with the basin boundary. A drop in amplitude across

the basin boundary occurs as surface wave energy is converted to body waves.

These scattered phases are observed on teleseismic records shortly after P-pP.
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Appendix A: Analytic source function for 2d finite difference

Asymptotic source theory produces p-wave point source displacement potentials

in three dimensions of the following forms, assuming a step function source

[Helmberger, 19831

(z ,z,t) = .\/ [ I , Im 1 (.1.)

and for a delta function source

" ,d'I" " de11d"11 (A.2)

In these equations, p is given by

P T 2 ' (A.3)

and ,q is given by

R2  (A.4)

The conventions are z positive to the right, * positive to the right, Z positive

down, but wo positive up. The variables are: x, u horizontal distance and dis-

placement; z, w vertical distance and displacement; a p-wave velocity; 0 poten-

tial; and R _(Z2+Z2 )1/2.

The method used in this paper requires the delta function response in dis-

placement, which is obtained by taking derivatives of the potential.

,0 8: (A.5)ax' - a•

To simplify the taking of these derivatives, first take the Laplace transform of

Equation A.2.

O- = " mf'e'-(pg+'tl) v LEP dt (A.6)

Now, taking the derivatives A.5 of Equation A.6 and keeping only the far-field

terms

D I
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zp= -- = (-ap)n ad p- (0 )7 (A.7)

where t is the signum function. -U

+1 z >0

Returning A.7 to the time domain,

up -- -±-Re (p Op) and wp =- jRe (q'eop). (A.8)

Part of Equation A.2 can be evaluated before assembling the displacements, that

is

[I 4, I =L H(t -R/(A.)
Im dt V = 4 (A.)

A final stipulation is that one derivative with respect to time will be applied later

to the source time function before convolving it with the result, so one derivative

can be dropped here. Then using A.2 and A.S in Equation A.8:

*%d
__ -__ _ Re (-P -7 (A.O) 1--

and

,42 d I(t i-Raeq(/)I A1
irv Tzdt [~ /T~ 2 i

Now let

Sp [+*I FD] and wp d [wrD] (A. 12)

Then, combining A.10 and A.11, P.

S v2 H(t-R/o) ReI p VP_ (A.13)

Approximate Vp" as

2~ Pa)
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or

P VP0 1 1_k+ k,0  (A.14)
where k is a parameter that allows a better fit to VT over selected ranges of

take-off angle. Using this approximation, set

Re (p V 'p Re [ vj I1 + o

(1-)'P-- + kRe (p2

k p;L j(2_Z2)+_!. L.] (A. 15)

Similarly,

Re(r* VTp (1-k)Vpo t e+ 2 1.zr ,z-- f. (A.16)

If i is the take-off angle (the direction of R), measured counter-clockwise from

positive z, then po=jin(a)/a. Take pa=/a for i-r/2 in Equations A.15 and A.16,

and apply these to Equation A.13,

%/2 H( -R /a) X..L1  ;_ + tf : 2+z(R /at) 2  1
WI,1J ) +(R/at)), I2R2["''*)- , I -2z (+X I. I (R /at )2e

Let (R /at) 2=T, and IzlI=z, then

=) VY H(t-R/a) I1-k)() + 2 -tz2 +Z T (A.17)

It is instructive at this point to do dimensional analysis on Equation A.17.

Let units of length be denoted I and units of time t. Then,

_I +i 12]

D *12J

12 4
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(A.18)

Convert this result to point source form using Equation A.12.

(W) P 77- T

(A.l1)

Now convolve the result with the correct time function, the reduced displacement

potential (RDP) function. The definition of the RDP is

4(R ,t) = Z00 where j(t) = (l-e - )(l+kt+...) (A.20)

R

where 0. has dimensions of volume. From Equation A.5, displacement is

84 __L db (A.21)
aR R 2 Radt

Applying this to the derivation above, true displacement is expressed as

* u(R,t) f - (t -±- (A.22)

where the derivative is equivalent to the expression of Equation A.19. Continu-

ing with the dimensional analysis, Equations A.19 and A.22 give the result

- tI (A.23)
2

But, in the derivation of Equations A.10 and A.11, one time derivative was

dropped in order that it could later be applied to the source time function.

Replacing 0i with d O/dt in equation A.22, Equation A.23 becomes

13 1 tt -- i' -12 (A.24)

which is correct for displacement. Instead of using the RDP, a moment could be

applied to the filtered result. Replace X4t) with MoIO-°0/4irda 2 , where M0 is

moment in dyne-cm, d is density in g/cc, and a is p-velocity in km/s for dis-

placement in cm.



-31-

When applying this source to the finite difference method, the full form of

the source is assembled in stages. The form of the source entered into the finite

difference grid is given in Equation A.17. The value of k is chosen at the start of

the run to best fit the required range of take-off angles. Of course, since the

parameter k governs a linear combination between two source terms, a line iso-

tropic explosion and a line dipole force, the results of two runs differing only in k

may be combined to give any desired k. Since Equation A.17 is singular at

T=i, that is t--R/a, the corresponding point for the numerical time series must

be found by integrating the equation and matching area. This singular nature

also introduces energy at frequencies too high for the grid to propagate. To

correct this, the numerical time series is convolved with a Gaussian filter before it

is propagated.

The finite difference results must be subjected to a line source to point

source conversion filter. This filter is given by Equation A.12. It is restated here

where U1i.. and U, are line source and point source wavefields.

upoint(A.25) U.'

This may not be the best teleseismic form, considering the approximation (Equa-

tion A.14) of Vp/. Starting with Equation A.2, use Equation A.9 and rearrange

terms to obtain

OP %2 Re(Vp- I ,6(t -R/a)

As t approaches R/a,

- Re(v'")H(t-R/In)

Use Equation A.14 with k =0.5 and the approximations

sinisin iosin_.- and p0o

' d' .'. " ," ," " . ." " . -." ." .e ." -" . ." ," " ,," " ," ., ." .' . ." .- " % ." a" . " ." -" ' " ",,' " "" ", " _'z ',,"" " ,r , ' "d " 4
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to get the form

OF 1 V s-n + '~ s ] H (t-R/1a)

The reference take-off angle :0 is along positive z, that is, sin i0  . In this case,

the final form is

- + sin )H(t-R/a) (A.26)

An ideal line to point filter would cause OF in Equation A.26 to be H(t -R /a)/R

for all angles i between 00 and 1800. A better filter can be found by inspection.

Replace V7 in Equation A.28 as follows.

O -- I'7 -2.(1 + sin )H(t -R/a) (A.27)

Then for both ,=o ° and i=90 it is immediately found that Op is H(t-R/a)/R.

Finally, applying the substitution used to obtain Equation A.27 to the filter given

in Equation A.25,

2 1 d (A.28)UP*s,, = +F 7" T du,,.

-I-

., " " " .*.#'" ", . ?," " " ,e , .e ,, -.- , , ..-. -e r -. ....- € ..- e-e ". , ,c e .- " - . ,' . - ,, , _ - .,' .,€ . . " ' ,.
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Figure 1. Schematic diagram displaying energy paths for a) flat layered

model versus b) laterally varying structure. The model is two-dimensional.

The figure demonstrates the motivation for developing a two-dimensional

teleseismic method that accounts for local structural variations.

Figure 2. Teleseismic data at MAT. These are WWSSN short period vert-

ical seismograms recorded at station MAT, Japan for seven different

events at various locations within Yucca Flat (see Figure 18). There are

very strong secondary phases appearing after P-pP. While P-pP seems

relatively consistent among the records, the secondary phases are not, indi-

cating the presence of scattering structure near the source.

Figure 3. Strong motion data for FLASK. Only the vertical velocity

records are shown here. The stations (numbered stations ranging from 781

to 795) are each marked as an x on the map of Figure 18. The source is in

the center. Such data strongly argue for lateral variation because of the

strong lateral contrast in peak amplitude and duration of the Rayleigh

wave.

Figure 4. Green's transformation for P not in domain D. The contour F is

chosen such that there are no singularities of the integrand in the area D

that F encloses. The variable r in the transformation is the distance from

P to any point on F or in D. The vector n is the outward directed normal

to F.

Figure 5. Green's transformation for P in D. Here, the contour a is intro-

duced in addition to F around the point P. Now the domain D' is that

area enclosed between contour F and contour a. These contours are freely

deformable and a is chosen to be circular with radius f centered on point

P. The limit as £ approaches 0 will produce the desired integral formula.

I4

-V,

.- .f,4 \w 5, , V 2 ,, ' ,_ . C rV. ._ .-. . ' ,.,% ' . . -* ,* 4.,*,.... , *... %,... % ... - . .. % -.... .- .... . .. .. . . . .
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Figure 6. Geometry for three-dimensional analytic evaluation of the Kir-

chhoff integral. The interface surface is S, with solid angle 0 tracing out

dS. The normal to the surface is fi. The source, at distance r0 from S,

generates potential 0 which produces signal O(S) on the surface. Kirchhoff

integration gives the result 5(P) at point P, at a distance r from S.

Figure 7. Geometry for two-dimensional analytic evaluation of the two-

dimensional Iirchhoff integral. The line interface is F, with angle 0 trac-

ing out dl. The normal to the contour is fi. The source, at distance r0

from F, generates potential 0 which produces signal 46{r) on the surface.

Two-dimensional Kirchhoff integration gives the result 4(P) at point P, at

a distance r from r.

Figure 8. The geometry for two-dimensional Kirchhoff along a flat inter-

face in a half space. The contour r has been deformed such that it follows

a line F parallel to the x axis from x=-oo to x=+oo and is closed at

r' = - (r2) in the direction of z=+oo. The integrand becomes trivial

along F2, reducing the integral to an infinite definite integral along x. This

is further reduced for numerical application to a finite sum along x.

Figure 0. Test results for Lamb's problem. Three methods are compared

in this figure: two-dimensional Kirchhoff, finite differences, and Cagniard -

de Hoop. The records are responses in a half space with a source 1 km

deep for deeply buried receivers (6 km) at the range of horizontal distances

indicated. The velocities of the medium are 4.0 km/s p-wave and 2.3

km/s s-wave with a density of 2.7 gm/cc. The source is an explosion with

RDP parameters K=12.0, B=1.0 and Vk--010.

Figure 10. Test results for Lamb's problem. The medium is the same as

that of Figure 9. The receivers are on the surface and only finite

differences and Cagniard are compared. This demonstrates the accuracy

|%
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of finite-difference strong motions.

Figure 11. Four models of basin boundaries. These are the four canonical

models which are used to demonstrate the effect of various basin termina-

tions. The structure, apart from the boundaries, is a layer over a half

space. The layer has a p-velocity 2.3 km/s, s-velocity 1.1 km/s and den-

sity 2.0 gm/cc. The half space has a p-velocity 4.6 km/s, s-velocity 2.7

km/s and density 2.7 gm/cc. The star represents the position of the

source, always at a depth of 750 m. The inverted triangles are the posi-

4tions of strong motion instruments. The broken line is the contour along

which two-dimensional Kirchhoff is performed. The distances labeled on

model I are in km.

Figure 12a. Strong motion results for canonical basin models. These

seismograms are velocity records at the surface at distances 1, 3, 5 and 7

km from the source, for the first two models shown in Figure 11. An RDP

source with K-=12, B=, and o=1010 has been used. The number to

the right of each trace is the maximum amplitude in cm/s along that

trace. Each trace from each model (heavy line) is compared directly to the
corresponding trace for flat layers (light line). Two important observations

are made. First, the amplitude of the surface wave drops abruptly at the

basin boundary, and second, this drop is greatest for the least dipping

boundary.

Figure 12b. Strong motion results for basin models. This figure is the

same as Figure 12a, but compares the remaining two models shown in Fig-

ure 11.

Figure 13. Teleseismic p-wave results for canonical basin models. These

seismograms are displacement records convolved with a WWSSN short

period instrument response and include the same RDP source used in

V,
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Figure 12. They are also convolved with a Q operator with T*=I. They

are at a ray length of 1000 km from the source, and at take-off angles 100,

150 and 200. The number to the right of each record is the peak ampli-

tude normalized to the peak amplitude of a flat layer model at 0* take of

angle. The simple appearance of these seismograms is misleading, they

vary significantly from the fiat layer response shown as the fifth record in

each series. The first four records are from each model, in order, as shown

in Figure 11.

Figure 14. Teleseismic p-wave results for basin models. This is identical to

Figure 13, except that no Q or instrument response has been convolved

with the record. This makes the records broad band. Differences between

the records, especially secondary arrivals, are now more obvious.

Figure 15. Teleseismic s-wave results for basin models. The purpose of

this figure is to demonstrate the production of teleseismic s-waves,

although the true character of teleseismic s-waves observed is not accu-

rately reflected here. The figure is set up the same as Figure 13, but the

value of T' is far too low for the earth for s-waves. The sv arrivals are

partly pS, but this phase is small at small take-off angles. Much of the

energy shown is the result of basin boundary interactions.

Figure 16. Contributions of various line elements to the final seismogram.

The model is model 4 from Figure 11. Case 0 is the result of the contribu-

g tion from one line element at 17'. Each case adds more line elements to

the final seismogram. Cases 0 through 2 progressively build the P-pP

arrival; case 3 adds the energy from scattering. The records in all cases are

broad band velocity records at 5, 10, 15 and 20 degrees take-off angles.

They include an RDP source as described with Figure 12.

AP % 'r
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Figure 17. Effect of distance. Cases 0 through 3 represent progressively

greater distance from the source (5, 10, 100 and 1000 kin). These are

broad band displacement records at 5, 10, 15 and 20 degrees take-off angle.

Cases 3 and 4 are similar because at great distance, thus the source

becomes indistinguishable from the scatterer in terms of take-off angle.

Figure 18. Map of Yucca Flat. The contours show the borders of hard

rock outcrops. The filled circles are the locations of several events listed

adjacent to the figure. Each strong motion station used to record the

FLASK event (number 12) is represented by an x. The arc indicates the

general shape of the basin boundary as seen from above. The arrow indi-

cates the direction of WVSSN station MAT, Japan.

Figure 19. Cross section of Yucca Flat. The cross section shown here is a

generalization of the known structure at Yucca. Flat. The three layers

from the surface downward are alluvium, volcanic tuff and hard rock.

Hard rock is a broad term used here to describe Mesozoic granitic rock and

Paleozoic rocks, all of which have similar elastic properties (velocities and

density). The stars indicate four different source positions used (numbered

0 to 3), all at a depth of 875 m. The inverted triangles indicate the posi-

tion of the strong motion records generated by the finite-difference calcula-

tions.

Figure 20. Local cylindrical symmetry. The structure of Yucca Flat is

shown here as the locally cylindrical result required by the filter used to

convert line to point responses. Comparing this to the map of Figure 18,

locally cylindrical structure is desirable for the case of Yucca Flat.

Figure 21. Synthetic strong motion records for FLASK. These records,

generated by the finite-difference method, include an RDP source with

K=12, B=1 and V/,o=I01° . These are only for source position 1 (of 0 to 3
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on Figure 19), and for the stations shown. It is important to see that the

peak amplitude drops sharply across the boundary, that the duration of

the Rayleigh wave is reduced, and that the Rayleigh wave 'ppears to lose

relatively more of the lower frequencies as it crosses the basin boundary.

Figure 22. Direct comparison of strong ground motion. This figure shows

some direct observed to synthetic comparisons of strong ground motions

for the FLASK event. This demonstrates that, despite the simplicity of

the model used, the resulting strong motions are an accurate representa-

tion of those observed.

Figure 23. Synthetic teleseismic records for Yucca Flat events. A short

period WWSSN response and a Q operator with T*=1 have been con-

volved into the records. The RDP source mentioned in Figure 21 is also

included. The peak amplitudes are normalized to that for a flat layer

response at a take-off angle of 00. The flat layer record shown is at 150

The important observation here is that moving the source 1 km within the

basin is far more important than changing the take-off angle 50.

Figure 24. Direct comparison of teleseismic records. These comparisons

demonstrate the accuracy of the new method. Although the p-waves have

passed through the mantle and receiver structure, the majority of the

energy in the observed records is explained by the near source structure at

Yucca Flat. The repeatability of the method is demonstrated by KEEL-
SON and OSCURO. These events are located close together and are "U'

modeled well by the same synthetic record.

",::.S



tW~~U W W~Nd ~ U i WW~~ fN. N W A -UJUJMIN~~ I~~7V i~ ~ vv J~ vwvJu.rw j- -W V J-u Irv v]w~ww.Y

-39-

VI

a) low frequency

:



-40-

MAT

az= 308. 10 A= 795 0 a= 17.80

TOPGALLANT

STAR WORT B

FLASK

PORTMNTEA

5 sec

FIGUR 2



-41-

0 ~ CM

0

C) _ LC) OD N

N- N-P. 0

Co "O

LOL

C~[E

"Ile

(D 0)N
I~*) a



-42-

A
n

'Pir-URE

Dp



. -, ~

-43-

A
n

"S

.5.

5..

5..

C:

4..,

.4-

5%*

V
.5'

.5.
0I~

V.N,.

S

-5'..

-5'
5'.

4..

r
4..

.5.

I..
l7IflURE 5

.4..

?5.

S

*5.5.5.

.. .5.

S

S
5.

V
- w .'S'S.~.P.' S ~ ~ :~.P ~ ~\..*' '~~55 -'.'S*'S 'S.V ~'S~



-44-

P1 roP)

FIGUOE 6

- ~- ~'.~p ~ * 5 1 *'.*'*I AX .:*'-~1~ I% ~W



-45-

rr

(P)?

FIrtJRE 7 
p.



-46-

I

F
,w.

C,.

I. C'

Xi L~

- - - r
z

A
n

~-

'-CC.

*J".
FInURE 8

~
C.-..'

C-. CC,*

S
'C.

C,.

,.C ~
C-

S
C?...'.

S..-.,
Cl.. Cl*
~ .C

'C-

'C.
C-C..

0
'SIC

0

.. *C.

* ,. *. -



-47- p

I

2d Kirchoff Finite Difference Cogniard
Range, km cm/sec cm/sec cm/sec

1.84 1.84 2.2 4
2 -.. 1.74 1.73 1.82
3 1.56 1.-A~----I53 1.61

4 1.48 iv~-.1.31 1.30

5 1.43 1.32 4-~- 1.20

7 -~'~ 1.06 -A'-J-----1.02 0.96

8 0.90 0.75 0o.- 75
9 0.79 0.59 0.60

10 0.83 0.60 0 o o.-, .61

3 sec' P+pP pS

FIGURE 9

p

r.

'p.S,

.' l % "l %. % % " , .,% ". "l " ° " " " " " " ° 0

14



-48-
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Abstract I.]

The methods for Representation Theorem (RT) coupling of finite element (FE)

or finite difference calculations and Harkrider's (Harkrider 1g64, 1g70) propagator

matrix method calculations to produce a hybrid method for propagation of SH mode

sum seismograms across paths that contain regions of non plane-layered structure are

explained and develtped. The coupling methods explained in detail use a 2-D Carte-

sian FE formulation. Analogous methods for the 3-D method follow directly. Exten-

sive tests illustrating the validity and accuracy of the implementation of these cou-

pling methods are discussed. These hybrid techniques are developed to study the

propagation of surface waves across regional transition zones or other heterogeneities

that exist in part of a longer, mostly plane-layered, path. The effects of a thinning or

thickening of the crustal layer on the propagation of L. mode sum seismograms have

been examined in this study. The thinning or thickening of the crustal layer is used

as a simple model of ocean continent transitions. The Lg phase is of particular

interest since it is used in several important applications such as mapping the extent

of continental crust, magnitude determination, and discrimination between explosive

and earthquake sources. The understanding of the observations that L5 wave is .1

attenuated completely when the propagation path includes an oceanic portion of

length greater than one hundred to two hundred kilometers or a region of complex

crustal structure is not complete, and a clear explanation of these phenomena could

have important consequences for all these types of studies. The transition model cal-

culations done in this study show that passage through a region of thinning crustal '"
• ...

thickness, the model for a continent to ocean transition, increases the amplitude and

coda length of the L. wave at the surface, and allows much of the modal energy

-
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trapped in the crust, which forms the L. phase, to escape into the subcrustal layers f

as body waves or other downgoing phases. The magnitude of both these effects

increases -s the length of the transition increases or the slope of the layer boundaries

decrease. The passage of the wavefront exiting the continent to ocean transition

region through the oceanic structure allows further energy to escape from the crustal

layer, and produces a decrease in L. amplitude at the surface as the length of the oce-

anic path increases. The amplitude decrease is maximum near the transition region

and decreases with distance from it. Passage through a region of thickening crust,

the model of a ocean to continent transition, causes a rapid decrease in the L. ampli-

tude at the surface of the crust. The energy previously trapped in the oceanic crustal

layer spreads throughout the thickening crustal layer, and any amplitude which has

been traveling through the subcrustal layer but has not reached depths below the

base of the continental crust is transmitted back into the continental crust. The

attenuation of L. at the crustal surface along a partially oceanic path. occurs in the

oceanic structure and in the ocean to continent transition region. The attenuation

at the surface depends in part on the escape of energy at depth through the continent

to ocean transition region into the underlaying half-space. The total attenuation of

Lg due to propagation through a forward transition followed by a reverse transition

is at most a factor of four to six. This is inadequate to explain the observed attenus-

tion of Lg. Thus, additional effects, other than geometry must be considered to pro-

vide a complete explanation of the attenuation of Lg.

5'
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Chapter 3

Finite Element to Modal Propagator Matrix Coupling: Tests of Accuracy and

Applications to the Transmission of Lg along Partially Oceanic Paths

Introduction

In this chapter the effects of the length of the intermediate path between the con-

tinent ocean and ocean continent transition regions is investigated. First the results of

two FE calculations with different intermediate path lengths are presented and com-

pared. These examples are contrasted with the path length used in the previous

chapter. Then the RT integration method is discussed and explained. First analytic

expressions for the stress components of double couple and line sources are derived,

then the expressions for displacement and stress line source Green's functions are

determined. These expressions are used to illustrate the validity and determine the

accuracy of the RT coupling method. The RT coupling method can be used to con-

tinue the propagation of FE results through a layered structure using the displacement

and stress Green's functions for the remaining path length and the displacement and

stress time histories recorded at a column of element centers within the FE grid.

FE Results: Effect of oceanic path length on the attenuation of Lg

Results of two FE calculations including both forward and reverse transition

regions and an intermediate region of oceanic structure are presented here. Many of

the details of transmission of wavefield through a forward transition region or a

reverse transition region have previously been discussed and will not be repeated here.

The vertical extent of.the grid and thus that of each time slice illustrated for these

calculations is larger than that for the results discussed in the previous chapter. This =

increase in vertical extent makes the disturbances moving down through the

*% ', ,
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underlying half-space easier to see. The change in the angle at which these disturb-

ances travel down toward the base of the grid as the width of the triangular regions of

maxima widen later in the wavefield is also more clearly visible in these examples.

In Figures 1 to 4 time slices recorded during a calculation using a grid which

included fifty kilometer long forward and reverse transition regions separated by an

intermediate path, whose length is thirty two kilometers, of oceanic structure. In Fig-

ures 5 to 7 the results of a calculation using a grid containing the same fifty kilometer

forward and reverse transition regions separated by an intermediate path of seventy

nine kilometers are illustrated. Figure 8 shows the RMS amplitude as a function of

distance along the surface of each of these models. The upper plot shows the ampli-

tudes for the thirty two kilometer oceanic path and the lower plot shows the ampli-

tudes for the seventy nine kilometer long oceanic path. The amplitude, or vertical

scale on each of these plots is identical, however, the horizontal scale, measuring dis-

tance along the surface of the crustal layer, is not uniform. The vertical bars on the
p

plots indicate the ends of the regions of oceanic structure. The horizontal scales are

uniform between these bars and uniform but different outside these bars. Between

these bars the horizontal distance scale is defined so that the total length of the oce-

anic path in the illustrated model scales exactly to the distance between the bars. The

scale outside the area defined by these bars is such that the distance between each

point in the regions of equally spaced points is ten nodes.

Examining the time slices for the two examples with different oceanic path

lengths shows that the major difference between them appears to be the amount of

energy which is escaping out through the bottom of the grid. In the case of the

shorter path length only the disturbances traveling through the half-space with the

steepest angles are able to pass out of the system. All other disturbances are largely

or completely transmitted back into the continental crustal layer since they have not

rI r or V,
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propagated downwards far enough to avoid being incident of the mantle crust boun-

dary in the reverse transition. This observation provides an explanation of why there

is a critical length of intermediate oceanic path beyond which the Lg wave does not

travel. As the path length in the oceanic region increases, disturbances traveling

through the crust mantle boundary in the forward transition region at progressively

shallower angles are able to propagate downwards beyond the base of the continental

crustal layer and escape into the mantle. This means that less energy is available to

be transmitted back through the mantle crust boundary of the reverse transition and

reconverted to Lg wave energy. This trend is seen, although less clearly, in the for-

ward and reverse time slices in chapter 2. The intermediate oceanic path length for

that example is one hundred sixty nine kilometers. Disturbances that are seen to

propagate out of the grid in that long path example can be traced, even in the exam-

ple with the longer path length presented here, across the oceanic path length back

into the crust through the reverse transition region. This implies that as the path

length increases more and more converted energy is able to leave the system.

There is another contribution of the oceanic path length to the attenuation of Lg

passing through an oceanic structure. The energy that is transmitted into the oceanic

crustal layer is not all in the form of modes compatible with trapped modes in the oce-

anic crust. Therefore, as the wavefront propagates through the oceanic structure

further energy leaks from the crustal layer and propagates downward to eventually

escape from the system.

Calculation of Stress Components

To test the RT algorithm for coupling FE results to propagator calculations it is

first necessary to determine expressions for the stress seismograms and the stress and

displacement Green's functions used in the convolution integral. These expressions are

developed and demonstrated in this section. The use of these expressions in the RT



PW-71 Pp IF51IIWIA L vx IL 1"47A- V ; ; FK

0

d .d

4'd

VV

tI'

C4~ _

-~. v~~VV

E4-

. - d

~Z.

d~ -V



-72-

C4.

be-

oA
ca

d

o -

- C6

~a. -

.. t -~-.be

-r
a.-.



-73-

0'

E. 0

11*



-74-

IpI

.!Jr.

IS,

~~ d.

"II--



~' ~- W~~ ~ wiru~wv ,~-, ~ .~ ~ ~ i~'~ ~ ~ ~ W1~ WI. ~ ~ - ~L wx w~WWUVU~IYVU'~.W..

-75.-

,h.

I~e

S
'0 0
C4J U)

1 4J
N',

6.)

I..

.S Ca.

I-
C
.2 ~
-a

-U)

4) -a

.~ -~

b.
3

~1 6~'V
I a.

04.)
~.)
4.)I.)

U)

4) 1~-

- 4)4)
h. -

=

~ -N

* [ U

C
-. 4
*~~~~0

-a- -k
I

I

4 d £' .) . . ~ ~ . -- ** "~ ~



V, -. v -. v - -

-76-

s0 0
0

rs
V *

.0Iv

0

~ 4teaD

C d
t CL

mmo

AGO.
w



- 4P

.22.

Vat 0 SjC
M-

4 -

- ~~mmmm~q dTv

E1 0 (do

$ -b

ho*

~~it 0' c

ILA I-I

IIE d

lob<,.C
-~ o S

.~ ~ a- a

-- '. OP4



-78-

a. a

asa

6 0a 
e e

* *.Ssees

Figure~~~~~~~~~~~ 8:M sufc mltdsfrte w Emdl nldn bt owr n ees

one



-79-

integral will be discussed in the next section. The determination of displacement and

stress Green's functions is necessary in all applications of the RT integration method

regardless of whether the forcing functions are FE results, analytic stress and displace-

ment seismograms, or stresses and displacements from other sources. However, the

stress seismograms are used in the following discussions only as an example of a well

defined form of forcing functions. Using stress and displacement seismograms as forc-

ing functions produces RT integration results which may be directly compared to

purely analytic synthetics allowing one to verify the accuracy of the RT integration.

For the SH problem in Cartesian coordinates the stresses that need to be considered

are oY and ary. For the geometry used to couple surface waves from a FE grid into a

layered medium through which the waves will be transmitted by convolution with

propagator matrix generated Green's functions, only the stress a,3, is used. However,

o, will also be derived for completeness. Should the geometry change so that it

would be necessary to integrate over a horizontal surface such as the bottom of the

grid then ay would also be used.

The stresses, a. and o,, can be expressed in terms of spatial derivatives of dis-

placements. One method of calculating values for these stresses is to express the

derivative as a difference and evaluate the difference equation numerically. The

expressions used to evaluate the stresses in the FE method are one such set of

difference equations. They are

-u - u,(I)-uy(2)-uy(3)+uy(4)

8X 44x (a

±u y -uy(1)-uy(2)+uy(3)+uy,(4) (h '

az 4Az

In these expressions 1, 2, 3, 4, denote the positions of the nodes at the corners of the

2-D element (Figure 2, chapter 1) for which the element center stresses are axy and
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ar=. The displacement perpendicular to the FE grid is u., and the horizontal and ver-

tical spacings of the nodes in the grid are Ax, and Aiz respectively. Evaluating these

relations gives a reasonable approximation to the desired stress values. A second, and

more direct, method for determining the values of the stresses is to evaluate the ana-

lytic expression for each stress derived from the analytic displacement expressions.

The derivations of analytic stress expressions are outlined below. Expressions for the

stresses are determined for several different cases. First, dip slip and strike slip double

couple sources are considered, then, a line source in a horizontally layered medium.

Finally, the expressions for the line source Green's functions are derived.

The choice of evaluation of analytic expressions over the numerical calculation of

derivatives is based on speed and accuracy. Evaluation of the analytic expressions for

a stress component requires the same amount of calculation w the evaluation of a dis-

placement. For a given depth section of n elements n element center stress com-

ponents and n element center displacements need to be determined to evaluate the RT

integral which propagates the wavefield from the RT surface through a layered struc-

ture to the receiver. Thus, if the calculation of each stress or displacement takes time

t, the computation of the necessary displacement and stress components by evaluating

the analytic expressions would take time 2nt. When the stress component is deter-

mined using numerical differentiation, time (2n+2)t is required to evaluate the dis-

placements used in the difference equations, time nt is required to evaluate the element

center displacements, and additional time is required to process the numerical

difference equations. Clearly direct evaluation is faster. The calculation of numerical

derivatives is known to be a potentially unstable numerical procedure since subtrac-

tion of almost equal numbers is possible. Thus, direct evaluation will be more reliable

in cases where the numerical derivative becomes unstable. The analytic evaluation is

also more accurate since it is equivalent to a numerical derivative with infinitesimal

S =
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spacing between the corners of the element. The accuracy of the numerical derivative

increases as that spacing decreases. In practice, however, for the types of disturbances

considered in this study, the increase in accuracy is small and both estimates are

equally acceptable.

A numerical procedure is implemented to evaluate the analytic expressions for

the stress components. The validity of the procedure is illustrated by comparing ana-

lytic stress time histories, determined by evaluation of equation (4) and (6) below, with

corresponding results generated using the difference equations (1). The results of these

comparisons are discussed after the analytic stress relations are developed.

The analytic expressions for the stress components for SH waves from a point

double couple source are directly obtainable from the expressions used to determine

the corresponding displacement seismograms. These expressions,

LV(xz) vo ) °R(Z 1
I.

0x,1) =--) ( ( (2b)

where the variables are as defined in chapter 1, lead to expressions for the stress a,

when their derivatives with respect to z are calculated. Only the final term in each

equation depends directly on z. From Harkrider (1964)

I- (3)
a (Z) ]H PR [vo/ IH

Substituting -V(z)I from (2) for uy in (1) and replacing the derivative of [vs(  H

by (3) gives

-r Lvo H 'o / (4a)
o(XZ) (k VhT(Z ]H

2w c~r .

V~h,
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M0  1 aH (')(kr)F j [rz Jb
-z(,) kL- AL- I L)rr*h Pz (4b) I

2wp As r YO/CLI YO / CL JH

Expressions (2) also yield the expressions for stress a,, when their derivatives

with respect to x are calculated. All terms except the Hankel function are constant

with respect to x. By expanding the Hankel function term in an asymptotic series for

large r, and ignoring terms of order IL, it can be shown that
r

ak M k(kLr)Lr)
-ax a r Iar

Then combining (1), (2), and (5) gives-

ijs-.AL 8r v 0  H(6a)

=,YXZ ikL --R 2A L r [. )$ h [ RJ

(.ox(xz) } ikLLS 2w a kr) L /c.H L (6b)

Equations (2) are the analytic expressions for displacement for the dip slip and strike

slip faults, the corresponding expressions for the stresses are shown in (4) and (6).

The analytic expressions for a line source in a layered medium are derived by a

procedure similar to that used in the previous section to obtain the stress expressions

for the point double couple source. The same sequence of calculations is applied to the

expression for the displacement produced by a 2-D line source as was -applied to the

expressions for the strike slip and dip slip displacements. These calculations yield the

analytic 2-D line source stress equations. The displacement at depth z due to a line

source at depth h is

-LZ) (7) ";')

I

- * ~ *S~,** ~os-
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In this case all terms in (7) except [VR-Z) ] are independent of z. Thus, the stress
L VO JH

,z, has the same form as the displacement expression with [ vRIZ)  replaced by its
Y v  JH

derivative with respect to z, that is by the right hand expresuion of (3). Similarly, the

stress O',y has the same form as the displacement with the exponential in x replaced by

its derivative. Therefore, the stresses for the 2-D line source are

HO e(Z) l -ik~x8a
{03(xz) } 2,S AL [ [vS(h / L H

2 r R pj Y- e k 'x  (8b)(fV~~z 7rspAL[VS(h) irVR(Z)JR-k(u~xL }vo JHL vo j

Next it is simple to extend the treatment used in the previous paragraph to the

expression for the displacement Green's function for a line source in a layered half

space. It has been previously shown that this Green's function is

I-(~h)vR(z) e -) (9) -L Vo J Vo JR

In this case a stress source term rather than a stress receiver term is needed. Thus,

the z derivative is taken with respect to the source term. All terms in (9) except

v  are independent of z, so the &,y term has the same form as the displace-

ment equation with - replaced by its derivative with respect to z. The form
v0  H

of this derivative is identical to that in (3) except that the R subscript is replaced by

an S subscript denoting the properties at the source at the RT surface rather than at

the receiver. Similarly the stress xy has the same form as the displacement equation

with the exponential term replaced by its derivative with respect to x. Therefore the

derivatives of the Green's function are

qnS

~5'* 5'..
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r22,(XX ,h) AL . T, 1)1 [ RI 1 ] -ikL(x-fl) 1)) 0A O/ CLj Vo H.{ P z(x~z;c~h) 2 A [..L [VO eikx- (lob)

{ r1(x~ 1 ) -&[ .A() 2. Z 1 2] ekx 1  l

Now it is necessary to illustrate that expressions (4), (6), and (8), for the stress

components give the correct results. The tests illustrated in Figures 9, 10, and 11 are

analogous. In each case the upper trace in each pair is the displacement or stress as

calculated using one of the sets of analytic expressions given above. The lower trace

in each pair is the same displacement component, generated by averaging the sur-

rounding four nodes, or the same stress component calculated using the difference

equations (1) with Ax - Az - .5km. The node spacings are chosen to correspond to

those used in the FE calculations. The top pairs of traces are the V=uy displace-

ments at the surface. The second pairs of traces are the stress ar,"at 0.25 km depth,

and the third pairs of traces are or. at 0.25 km depth. The ratio of the analytic peak

to peak amplitude to the numerical peak to peak amplitude is given for each pair of

traces by the upper number beside that pair. The same type of ratio, analytic to

numerical, is calculated using the RMS amplitudes of the seismograms and is shown as

the lower number beside each pair. The quality of the waveform correspondence and

the amplitude ratios remain essentially constant as one moves down the depth section.

Figure 9 shows the results for the case of the 2-D line source, equation (8). The pairs

of displacement and stress time histories show excellent correspondence when their

waveforms are compared. Numerical derivatives for a, agree with the corresponding

analytic derivatives to within % 4% for peak to peak amplitude and to within =I%5

for RMS amplitude. The peak to peak differences between the two methods are about
NIP

2% for the average displacement V and the stress a,y. As expected, for all three cases,

the correspondence improves as Ax and Ay are reduced. Figure 10 shows the results N.

"V
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Figure 9: Comparison of element center displacement and stress time histories
calculated for a 2-D line source using two methods. Upper traces in each pair are
evaluations of the analytic expressions at the element centers. Lower traces are deter-
mined by using displacements calculated at the nodes surrounding the element ceniter
to evaluate the difference equations. For all traces A-1500 kmn, and source depth is 8
km. The fundamental and first five higher modes are included in the synthetics. The
upper number to the left of each trace is the peak to peak amplitude ratio of the
numerical to analytic calculations, the lower number is the corresponding RNIS ampli-
tude ratio.
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Figure 10: Comparison of element center displacement and stress time histories
calculate for a strike slip type double couple source using two methods. Only the fun-
damental mode is illustrated. Other details are the same as for figure g.
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Figure 11: Comparison of element center displacement and stress time histories -

calculated for a strike slip type double couple source using two methods. Details are
the same as for Figure 9.
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for the case of a strike slip source, equations (4) and (6), using the fundamental mode

only. Again, the waveform correspondence within each pair is excellent. The peak to

peak amplitude ratios are close to one, showing less than 4% difference. Since the

major variation between the two methods is the resolution of the magnitude of the

high frequency peak near the onset of the trace the RMS amplitudes show a smalle"

variation of 2.5% or less. Figure 11 shows the results for the strike slip source, for a

mode sum including the fundmental mode and the first five higher modes. The

waveforms do not match as precisely as in the case of the fundamental mode alone,

but the correspondence is still excellent. The amplitude ratios do not significantly

change when the higher mode energy is added. Again, both for the fundamental mode

alone and for the mode sum, coryespondence between the analytic and numerical

methods of evaluation improves rapidly as Ax and Az are reduced. These tests not

only indicate the validity of the analytic expressions above, they also give an estimate

of the uncertainties present in the numerical differentiation used in the FE calcula-

tions.

RT Coupling of Analytic 2-D Seismograms and Green's Functions

In this section the validity and accuracy of the numerical implementation of the

Representation Theorem coupling technique, used in the following section to pass FE

results into a layered media, will be discussed in detail. The tests discussed below are

designed to give RT integration results directly comparable with purely analytic

results. First mode by mode results are presented to illustrated where the discrepan-

cies between the RT results and the analytic results originate. Mode sum results are

then presented. The form of the RT integral and its relation to the propagator matrix

formulation is discussed and a method for mode by mode filtering of mode sum forcing

function input is explained. The type of formulation used to explain the filtering

method is also applied to derive more quantitative mode by mode analysis of the

I

r %rr w-w- P.
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origins of discrepancies between RT integration results and purely analytic solutions.

These quantitative estimates of the sources of discrepancies explain the differences

seen between the RT integration results and the purely analytic results quite well.

All the results discussed in this section are derived using a simple geometry. In

all cases the model is a layer over a half-space. The layer has a thickness of thirty

two kilometers, a SH wave velocity 3.5 km/s, and a density 2.7 g/cm . The half-space

ha. SH wave velocity 4.5 km/s and density 3.4 g/cm3 . The same layer over a half

space model is used for the entire path, making calculation of purely analytic synthetic

for the entire path length of A = 1600 kin, or A = 1750 km simple. Purely analytic

synthetic seismograms were calculated at these distances for the mode sum and

separately for each of the fundamental mode and the first five higher modes. The

forcing functions used are the displacement and stress seismograms for a line source at

at depth of ten kilometers and a distance of A= 1500 km from the source. The forc-

ing functions are evaluated at positions corresponding to the element centers of the

rightmost column of elements in a FE grid with horizontal and vertical spacing of .5

km, whose right hand edge lies A = 1500.25 km from the source. Thus, the seismo-

grams are evaluated at points along a vertical surface, at depth intervals of 0.5 km,

beginning at a depth of 0.25 km below the surface. All forcing functions are evaluated

at a distance of A = 1500 km. Separate sets of forcing functions were generated for

each mode. A set of forcing functions which is a sum over the fundamental and the

first five higher modes was also calculated. The displacement seismograms calculated

using the RT integral are for distances of A = 1600 km, orA = 1750 km. Performing

RT integrations to determine hybrid solutions at these distances requires Green's func-

tions for propagation distances A = 100, or A = 250 km. At each of these distances

a set of stress and displacement Green's functions was determined for each mode and

an additional set was determined for a mode sum including the fundamental and the

'.
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first five higher modes. The Green's functions in each set were evaluated for a source

at each of the locations where displacement and stress forcing functions were deter.

mined and a receiver at the surface. The RT integration surface for these examples

extended to a depth of 37.5 km and included seventy five integration points. In the

following discussions the seismogram resulting from a RT integration may be referred

to as a hybrid seismogram, even though, for these tests of accuracy,.the same method

is being used to generate Green's functions and forcing functions.

The first group of tests using the sets of forcing functions and Green's functions

discussed above produced mode by mode RT integration results to compare to the

purely analytic synthetic single mode seismograms. The set of single mode forcing

functions for each of the individual modes, was convolved with the single mode set of

Green's functions for the same mode according to the RT integration relation. This

produced a hybrid seismogram for that mode to compare to the corresponding purely

analytic synthetic. Comparisons of the RT integration sums and the purely analytic

synthetics for each individual mode are shown in Figures 11 and 12. In Figure 11

comparisons for the fundamental mode, the first higher mode, and the second higher

mode are presented. Each of these pairs is illustrated at a distance of A = 1600 km

from the source. Figure 12 is a continuation of Figure 11 showing the results for the

third through fifth higher modes. The upper two pairs of traces are also illustrated for

a distance A = 1600 km . The lowermost pair of traces, those for the fifth higher

mode, are illustrated at a distance of A = 1750 km from the source. The fifth higher

mode results at 1500 km are equally well fit, but presenting an example for another

distance helps verify the observation that the goodness of fit between the hybrid

seismograms and the analytic synthetics does not depend significantly on distance pro-

pagated using the RT integration over stress and displacement seismograms and

Green's functions. In each of these figures there are three pairs of seismograms. The
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fundamental mode

0. 9 2.,=,,v
first higher mode

second higher mode

50 s

Figure 12: Comparison of analytic and hybrid synthetics at A-1600km. The
hybrid synthetics are transmitted the first 1500 km using the propagator method, and
the remaining 100 km using RT integration with propagator generated Green's func-
tions. The left column of seismograms shows the analytic synthetics and the right
column the hybrid synthetics. The results are presented mode by mode, and the mode
is identified below each pair of traces. The number between each pair of traces is the
ratio of the RMS amplitude of the hybrid trace to the ILMS amplitude of the analytic
trace.
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Figure 13: Comparison of analytic sod hybrid lynthetics It A-1600 km. This
figure is a continuation of Figure 12 showing the remaining modes. Other details are
the same as for Figure 12.
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leftmost seismogram in each pair shows the purely analytic synthetic, the rightmost

seismogram shows the hybrid synthetic produced by RT integration. Between each

pair of seismograms is a number indicating the ratio of the RMS amplitude of the

hybrid synthetic to the RMS amplitude of the purely analytic synthetic. Below each

pair of traces is a label indicating which mode is being illustrated. All the seismo-

grams are bandpans filtered for periods between one and twenty-five seconds. The

long period limit on the band pass filter was chosen to improve the correspondence

between the waveform of the purely analytic synthetic and the RT integration result

for the same mode. Longer periods seem to be poorly reconstructed by the RT

integration, and are consequently filtered out of the displayed results. The filtering

has the largest effect for the first two higher modes, and has a progressively smaller

effect for each successive higher mode. Higher mode results depend less on the long

periods and produce an increasingly good fit even before filtering. The increasing

discrepancies between the purely analytic and the hybrid synthetics for successively

lower higher modes is due to the larger proportion of long periods in those modes, and

is a likely source of discrepancies in the mode sum calculations presented in the next

paragraph and will be explained later in terms of the quantitative estimates of error

yet to be derived.

The next test conducted was the RT integration using the mode sum forcing

functions and Greens functions. The hybrid synthetic resulting from this integration

is compared to the purely analytic mode sum synthetic in Figure 14. In this figure the

hybrid synthetic is labeled mode sum and the purely analytic synthetic is labeled ana-

lytic. The seismogram labeled sum of single modes is calculated by summing the

hybrid solutions for each individual mode to produce another estimate of the mode

sum hybrid synthetic. Clearly the waveforms of all three seismograms are extremely

similar. The numbers to the left of each of the lower two seismograms indicates the

I
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mode Sum
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Figure 14: Comparison of analytic and hybrid mode sum Seismograms. The Upper sesme

Tram labeled analytic synthetic is a calculated using the propagator technique for the whole path.

The center sesropam labeled mode sum, is calculated using a RT integration o" mode sum

, s func tios ndg forcin functions. The lower seismogram, labeled sum o f single modes, asthe sum of the RT interaien results for each individual mode.
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ratio of the RMS amplitude of that seismogram to the RMS amplitude of the purely

analytic mode sum seismogram. The agreement in amplitude between the purely ana-

lytic and hybrid mode sum results is better than the agreement seen for any single

mode. This improvement in agreement is probably fortuitous. The mode sum syn-

thetic calculated as a sum over the single mode hybrid results shows a more realistic

amplitude measure consistent with the single mode results previously presented.

The RT integration is accomplished by the evaluation of the following expression

based on integrating equation 32 of chapter I along a vertical surface.

u(vt)- f rFz(x,z;f,3)u2 .(G,3) + r.,j(x,z;,,3)u ,,3)} kdC (11)
0

In this expression the displacement at time t at location 7 is determined as a RT

integral. The forcing functions, u4(C1,C3) and psUzi2(Cj,f 3) are evaluated on the verti-

cal surface perpendicular to the propagation direction at a distance C, from the origin

for points with a range of values of C3. Thus, the propagation distance for the forcing

functions is C1. The Green's functions, r2 and r2.1 are evaluated by placing a source

point in each position where a forcing function is evaluated. By substituting alternate

expressions, in terms of the variables used in the Propagator matrix method, for the

Green's functions and forcing functions in equation (11) the Representation Theorem

can be expressed in terms of terms constant with respect to C times a simple integral

with C3 as an integration variable. To derive this form of the RT equation (9) is sub-

stituted for r22(x,z;fj,c3 ), and equation (8b) is substituted for P.(x,z; 1 , 3 ). Also,

equation (7) is substituted for u4(C1,C3), and equation (10b) for u2.(C1,k). Performing

these substitutions gives

( "4 S 1 r 1 2ikx [ -g--3)4r -1 dC3  (12)

0 LII

u2 (Zt)== V0  v0  j~[V 0  H

V -h VRZ (C3 p R - *
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When the above mentioned substitutions into equation (11) ar performed it becomes

evident that both convolutions in the integrand of equation (11) produce identical

expressions. Therefore, it should be possible to accelerate the numerical evaluation of

*11) by evaluation only one of the convolutions and then doubling the resulting solu-

tion. This approach had the additional advantage that it makes it unecessary to

record both displacement and stress time histories in the FE calculations. Either one

of these should be sufficient to calculate a 2-D SH RT integral. Even more useful is

the fact that the equality of the two convolution terms allows determination of the

value of the RT integral with the evaluation of half the number of Greens function.

Tests have been conducted to investigate the validity of this approach. The

waveforms of the solutions, for complete evaluation of the RT integral, and for evalua-

tion of either term in the integral are indistinguishable when the resulting seismograms

are examined. Thus, it was considered unnecessary to illustrate the results from these

tests. The amplitudes of the sums of each term in the integral of (11), however, were

ot necessarily identical. Using the term containing the displacement and the Green's

function stress general yielded amplitudes a percent or two higher than using the other

term. These amplitudes were usually in better agreement with the synthetic than the

amplitudes determined by summing the two terms. The differences in amplitude

agreement are small enough to be ignored. Further calculations of the RT integral

may be done by doubling the value of the first term in (11) without significantly

effecting the solution.

Returning to equation (12) it is clear that many of the terms do not depend upon

the integration variable C. Taking these terms outside the integral and then compar-

ing them to equation (7) allows equation (12) to be simplified to

c VR(f3) 
3R( 1

u2 (r,t) =u 2C x,t)*2&fA(f3) [] df3  (13)25

*% .i -. L v° *J~ *- - J
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Defining I to be the relation

r R(63) 1rVR(C3) 1 (4
00 jH~O jH

immediately leads to the relation

2(1,

Later the use of this last relation in the estimation of the minimum error for each

mode will be discussed. First some consequences of equation (14) will be considered.

It is well known that if i and j represent two different modes for a given period, that is

kiykJ for w s or for a given wave number ki=kj, wi- j , then the orthogonality

relation for Love waves states that 1

00

fp(z)vi(z)vj(z)dz - 0 i-j (16)
0

In this equation vi is the equivalent of the component of u2 in equation (14) due to the

single mode i. Comparing (14) and (16) shows that equation (14) is a form of the

orthogonality relation. At this point it is useful to notice that the two vR(!3)

terms in the equation (14) each have separate origins. One originates with the forcing

functions and the other with the Green's functions. Thus, any single mcdes not com-

r( VR(W 1
mon to both the [v R( 3) ] term from the forcing function and the termY o H o

from the Green's function will produce zero contribution to the resulting hybrid result.

This implies that the only modes present in both the Green's functions and the forcing

functions will be present in the RT integration results. Thus, choosing Green's func- I
tions with a subset of the modes present in the forcing function will produce a filter

that gives RT integration results that contain only that subset of modes. This is

%,S .
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demonstrated in the next set of numerical experiments.

A series of calculations investigating the accuracy and efficiency of the use of a

Green's functions, containing only a subset of the modes present in the forcing func-

tions, as a filter to extract only those modes from the forcing functions has been com-

pleted. In particular, the single mode sets of Green's functions were used in the RT

integral along with the mode sum set of forcing functions. A RT integration was com-

pleted for each single mode set of Green's functions. Figure 15 presents results of the

RT integration of the mode sum forcing functions and the fundamental mode Green's

functions. Figure 16 is analogous to figure 15 but uses the third higher mode Green's

function set. In each of these figures two columns of five seismograms are illustrated.

The left column shows results of the single mode Green's functions integrated with the

mode sum forcing functions. The right column shows the results of integrating single

mode Green's functions with single mode forcing functions. The RT integration is

numerically evaluated by summing the convolutions at discrete points along the RT

surface. The sum begins with the point nearest the surface and then adds points at

steadily increasing depth. In Figures 15 and 16 the first row of seismograms is a single

convolution, the sum down to a depth of 0.25 km. The second row is the sum of 15

convolutions, and includes all integration points to a depth of 7.25 km. This pattern

continues with the depth of the deepest point included in the integration indicated to

the right of each pair of seismograms. The numbers between each pair of seismograms

indicate the ratio of the RMS amplitude of the left trace to the RMS amplitude of the

right trace. For the fundamental mode case this amplitude ratio varies only slightly

with depth and shows a trend of increasing with depth only in the upper eight kilome-

ters. However, as illustrated by the third higher mode, the higher mode ratios con-

tinue increasing with depth to much larger depths. This implies that the integration

must proceed to a reasonable depth for the amplitude of the filtered mode sum
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Figure 15: Comparison of hybrid synthetics at ,A-1600 km. The traces in the
left column are calculated by RT convolution of the mode sum forcing functions calcu-
lated at A-1500 km with the fundamental mode Green's functions for ICO km
further propagation. The traces in the right column are determined by RT convolu-
tion of fundamental mode forcing functions for DELTA-IS00 km and the same
Green's functions as the left column. The numbers to the right of each pair of seismo- .
grams show the depth to which integration along the RT integration surface has been le
completed. The central numbers show the RMS amplitude ratio of the the right trace-
to the left trace. OP
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Figure 18: Comparison of hybrid synthetic@ at A-1600 km. The traces in the
left column are calculated by RT convolution of the mode sum forcing functions calcu-
ILted at A 1500 km with the third higher mode Green's functions for 100 km further r
propagation. The traces in the right column are determined by RT convolution of
third higher mode forcing functions with the same Green's functions 1s the left
column. The numbers to the right of each pair of seismograms and between each pair
of seismograms have the same meanings as for Figure 14. I
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seismogram to reach that of the single mode hybrid results. For the modes investi-

gated it was determined that the amplitude ratios stabilized near or above the base of

the crustal layer, and that when the amplitudes had stabilized the waveforms of the

two calculations showed little difference and remained relatively stable. Figures 17

and 18 illustrate the mode by mode results of the test discussed above. Rather than

show the detailed progression to the stable result as in the previous two figures, a

depth of thirty kilometers was chosen as the vertical extent of integration. This

allows the illustration of the results of all six modes in two figures. In these figures

two columns of seismograms are illustrated. The left column shows the results using

the mode sum forcing functions and the single mode Green's functions. The right

column shows the results using the single mode forcing functions and the single mode

Green's functions. The numbers between each pair of seismograms indicate the ratio

of the RMS amplitude of the left trace to the RMS amplitude of the right trace.

Below each pair of seismograrns the mode of the Green's functions is indicated. These

seismograms appear different from those shown in Figures 12 and 13 since they have

not been filtered before plotting. In summary, the effect of using a set of Green's

functions containing a subset of the modes present in the set of forcing functions is to

produce an efficient filter that allows only the modes common to both sets to appear

in the hybrid result.

Now it is time to return to the analysis of the accuracy of the RT integration for

a given single frequency mode. Rearranging equation (15) gives

2ALII=1 17

Evaluation of this simple equation provides a direct estimate of the accuracy of the

integration on a mode by mode basis. The estimate of the accuracy is obtained by

evaluating the 11 integrand at each integration point used in the RT integration, for

each frequency on each branch of the dispersion curve used. For each single frequency

-V.JI d
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. ,,\ - 1.00

fundamental mode

first higher mode

second higher mode

Figure 17; Comparison of synthetics at A-16OOkm. The synthetics are
transmitted the first 1500 km using the propagator method, and the remaining 100 km
using RT integration with propagator generated Green's functions. The left column of
seismograms shows the RT convolution of the mode sum forcing functions and the
Green's functions of the indicated mode, the right column shows synthetics resulting
from RT integration of forcing functions and Green's functions of the indicated mode
only. The results are presented mode by mode, and the mode is identified below each
pair of traces. The number between each pair of traces is the ratio of the RMS ampli-
tude of the left trace to right trace.
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Figure 18: Comparison of synthetics at A-1600 km. This figure is a continua-
tion of Figure 12 showing the remaining modes. Other details are the same as for Fig-
ure 12. .
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mode the quantity on the right hand side of equation 17 is determined at each integra,

tion point and summed over the integration surface. If the solution were perfect with

no error present, then the sum would be exactly one. In practice the sum departs from

one by some amount which gives and estimate of the size of the minimum error that

could be expected in that mode in the RT integration results. The estimate is a,

minimum since it does not account for the phase of the arrivals nor for possible errors

in that phase. The evaluation of the error using this relation is much faster than com-

paring results from multiple applications of RT theorem coupling. For example gen-

erating the tables on pages 219 and 220 which show the effects of varying grid spacing

or of varying the vertical extent of the RT integration surface on the errors took less

than 25% the time needed for a single RT integration example.

The tables on pages 219 and 220 show the effects of grid spacing and vertical

extent of the integration surface. In the tables z indicates the depth in kilometers to

which the integration surface extends, Ax indicated the spacing between successive

integration points on that surface, and T indicates the period of the given mode. For

each combination of these parameters illustrated the numbers in the table are the

values of 24.Ij. It is clear from examining these tables that the grid spacing is fine

enough to yield good results. Halving or doubling the grid spacing makes less than

one percent difference in the error estimates which ae at a level of about 98.5%.

Reducing the time spacing by as much as a factor of four made no significant

differences in the estimates of accuracy. So no table was included to illustrate how

accuracy changed with time spacing. Seeing the errors on a frequency by frequency

basis also helps to understand the causes of the inaccuracies noted in the actual RT

integration results. The only variation that made noticeable changes in the accuracy

of individual modes was variation in the depth to which the integration surface was

extended. This change was, as expected, largest in the longest period modes. At
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fundamental] mode

z-40 km dx,-.5 km
dx-,25 dx-0.5 dx-1.0 s-40 z=70 Z=-0

1000. .00071 .00071 .00071 .00091 .00208 .00325
500.0 .00287 .00261 .00284 .00364 .00831 .01296
250.0 .01151 .01147 .01139 .01457 .03295 .05098
90.00 .09059 .09027 .08964 0.1123 0.2336 0.3384
70.00 0.1509 0.1503 0.1492 0.1843 0.3613 0.4998
60.00 0.2057 0.2049 0.2033 0.2480 0.4617 0.6145
55.00 0.2443 0.2433 0.2414 0.2920 0.5248 0.6808
50.00 0.2937 0.2926 0.2902 0.3473 0.5974 0.7513
45.00 0.3574 0.3559 0.3529 0.4169 0.6787 0.8223
40.00 0.4389 0.4370 0.4332 0.5034 0.7654 0.8881
35.00 0.5404 0.5379 0.5329 0.6070 0.8500 0.9408
30.00 0.6584 0.6551 0.6486 0.7216 0.9203 0.9738
25.00 0.7793 0.7752 * 0.7669 0.8314 0.9653 0.9873
20.00 0.8817 0.8766 0.8664 0.9160 0.9841 0.9893
18.00 0.9134 0.9079 0.8969 0.9397 0.9865 0.9889
16.00 0.9390 0.9331 0.9215 0.9576 0.9874 0.9883
14.00 0.9586 0.9525 0.9402 0.9701 0.9874 0.9877
12.00 0.9729 0.9664 0.9535 0.9782 0.9870 0.9871
10.00 0.9825 0.9757 0.9623 0.9827 0.9865 0.9865
8.000 0.9883 0.9813 0.9674 0.9848 0.9861 0.9861
6.000 0.9913 0.9841 0.9697 0.9854 0.9856 0.9856
4.000 0.9924 0.9850 0.9702 0.9852 0.9852 0.9852
2.000 0.9924 0.9848 0.9696 0.9848 0.9848 0.9848
1.800 0.9924 0.9848 0.9695 0.9848 0.9848 0.9848
1.600 0.9923 0.9847 0.9694 0.9847 0.9847 0.9847
1.400 0.9923 0.9847 0.9693 0.9847 0.9847 0.9847
1.200 0.9923 0.9846 0.9693 0.9846 0.9846 0.9846
1.000 0.9924 0.9847 0.9693 0.9847 0.9847 0.9847
0.8000 0.9924 0.9847 0.9692 0.9847 0.9847 0.9847
0.7000 0.9924 0.9847 0.9692 0.9847 0.9847 0.9847
0.6000 0.9917 0.9839 0.9684 0.9839 0.9839 0.9839
0.5000 0.9924 0.9847 0.9691 0.9847 0.9847 0.9847
0.4000 0.9925 0.9847 0.9692 0.9847 0.9847 0.9847
0.3000 0.9925 0.9848 0.9692 0.9848 0.9848 0.9848
0.2500 0.9966 0.9889 0.9733 0.9889 0.9889 0.9889
0.2000 0.9927 0.9849 0.9693 0.9849 0.9849 0.9849
0.1500 0.9928 0.9849 0.9692 0.9849 0.9849 0.9849
0.1000 0.9930 0.9851 0.9694 0.9851 0.9851 0.9851
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fifth higher mode

T z-40 km dx-.0.5 km
dx-,25 dx=0.5 dx-1.0 z-40 z=70 z=100

2.2960 .08O9 .08054 .07972 0.1171 0.3077 0.4571
2.2900 0.2266 0.2253 0.2230 0.3185 0.6836 0.8523
2.2860 0.2996 0.2980 0.2949 0.4144 0.8015 0.9312
2.2000 0.8010 0.7963 0.7877 0.9187 0.9901 0.9902
2.1000 0.9213 0.9155 0.9050 0.9748 0.9880 0.9880
2.0000 0.9619 0.9555 0.9440 0.9839 0.9870 0.9870
1.9000 0.9784 0.9717 0.9596 0.9855 0.9863 0.9863
1.8000 0.9858 0.9788 0.9663 0.9857 0.9859 0.9859
1.7000 0.9892 0.9822 0.9694 0.9856 0.9856 0.9856
1.6000 0.9909 0.9837 0.9708 0.9854 0.9854 0.9854
1.5000 0.9917 0.9845 0.9714 0.9853 0.9853 0.9853
1.4000 0.9921 0.9848 0.9716 0.9852 0.9852 0.9852
1.3000 0.9923 0.9849 0.9717 0.9851 0.9851 0.9851
1.2000 0.9923 0.9850 0.9716 0.9850 0.9850 0.9850
1.1000 0.9923 0.9849 0.9716 0.9850 0.9850 0.9850
1.0000 0.9923 0.9849 0.9715 0.9849 0.9849 0.9849
0.9501 0.9923 0.9849 0.9715 0.9849 0.9849 0.9849
0.9001 0.9923 0.9849 0.9714 0.9849 0.9849 0.9849
0.8501 0.9923 0.9849 0.9714 0.9849 0.9849 0.9849
0.8001 0.9923 0.9849 0.9714 0.9849 0.9849 0.9849
0.7501 0.9923 0.9848 0.9714 0.9848 0.9848 0.9848
0.7001 0.9923 0.9848 0.9713 0.9848 0.9848 0.9848
0.6501 0.9923 0.9848 0.9713 0.9848 0.9848 0.9848
0.6000 0.9923 0.9848 0.9713 0.9848 0.9848 0.9848
0.5500 0.9923 0.9848 0.9713 0.9848 0.9848 0.9848
0.5000 0.9923 0.9848 0.9713 0.9848 0.9848 0.9848
0.4500 0.9923 0.9848 0.9713 0.9848 0.9848 0.9848
0.4000 0.9922 0.9847 0.9712 0.9847 0.9847 0.9847
0.3501 0.9922 0.9847 0.9712 0.9847 0.9847 0.9847
0.3000 0.9922 0.9847 0.9712 0.9847 0.9847 0.9847
0.2500 0.9927 0.9851 0.9715 0.9851 0.9851 0.9851
0.2000 0.9928 0.9852 0.9716 0.9852 0.9852 0.9852
0.1500 0.9921 0.9846 0.9710 0.9846 0.9846 0.9846
0.0000 0.9924 0.9849 0.9721 0.9849 0.9849 0.9849

0-7,
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longer periods the wavelength increases and the integration surface needs to be

extended downward to maintain accurate results. When the depth to which the

integration surface extends is less than n wavelengths then significant error occurs.

This relation is clearly visible in the tables on pages 222 and 223. These tables show

the mode by mode values of 2ALgI for each separate overtone, and for the fundamen-,

tal. It is easily seen that the error is very small until n+1 wavelengths, for the nth

higher mode, become longer than the depth extent of the RT integration surface.

This explains why the RT integration results and the analytic synthetics needed to

have the long periods removed to yield a good fit. Those long period components had

large errors due to incomplete representation caused by the truncation of the integra-

tion surface at depth and thus contaminated otherwise accurate results.

Using the RT Integration Method for Long Oceanic Paths

Now that the reliability of the RT coupling of FE results to a receiver distant

from the FE grid has been demonstrated it can be applied to the problem of investi-

gating the propagation of Lg when the intermediate oceanic path is too long to be

handled using FE alone. The amount of calculation needed to determine each seismo-

gram using the coupling technique is large enough that the calculation of an entire

depth section for reentry into another FE calculation would be worthwhile only if a

specific example were to be considered, and detailed structure were known. Thus, the

approach taken here is to calculate seismograms at the surface at receivers distant

from the end of the FE grid, and to examine what the remaining modal energy looks

like after propagation for a large distance through the oceanic crust. Then by know-

ing the proportion of surface amplitude that is removed by transmission through a

reverse transition an estimate of the RMS amplitude of the Lg energy that travels

through the transition can be made.

I .
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fundamental 1st 2nd
T T

1000. .00090 11.49 0.0000 5.750 0.0000
500.0 .00038 11.40 .00370 5.700 0.1350
250.0 .01457 11.20 0.1135 5.600 0.3522
90.00 0.1123 11.00 0.1868 5.500 0.5069
70.00 0.1843 10.80 0.2572 5.400 0.6219
60.00 0.2480 10.60 0.3249 5.300 0.7091
55.00 0.2920 10.40 0.3899 5.200 0.7758
50.00 0.3473 10.20 0.4521 5.100 0.8269
45.00 0.4169 10.00 0.5113 5.000 0.8660
40.00 0.5034 9.800 0.5072 4.900 0.8958
35.00 0.6070 9.600 0.6196 4.800 0.9184
30.00 0.7216 9.400 0.6881 4.700 0.9355
25.00 0.8314 9.200 0.7126 4.600 0.9485
20.00 0.9160 9.000 0.7530 4.500 0.9582
18.00 0.9397 8.800 0.7890 4.400 0.9654
16.00 0.9578 8.800 0.8210 4.300 0.9708
14.00 0.9701 8.400 0.8488 4.200 0.9748
12.00 0.9782 8.200 0.8729 4.100 0.9778
10.00 0.9827 8.000 0.8935 4.000 0.9800
8.000 0.9848 7.800 0.9108 3.800 0.9827
8.000 0.9854 7.600 0.9254 3.800 0.9842
4.000 0.9852 7.400 0.9374 3.400 0.9649
2.000 0.9848 7.200 0.9474 3.200 0.9852
1.800 0.9848 7.000 0.9555 3.000 0.9852
1.600 0.9847 8.500 0.9695 2.500 0.9851
1.400 0.9847 6.000 0.9775 2.000 0.9849
1.200 0.9846 5.500 0.9818 1.900 0.9849
1.000 0.9847 5.000 0.9839 1.800 0.9849

0.8000 0.9847 4.500 0.9848 1.700 0.9848
0.7000 0.9847 4.000 0.9851 1.600 0.9848
0.6000 0.9839 3.500 0.9852 1.500 0.9648
0.5000 0.9847 3.000 0.9351 1.400 0.9848
0.4000 0.9847 2.500 0.9850 1.300 0.9847
0.3000 0.9848 2.000 0.9848 1.200 0.9847
0.2500 0.9889 1.800 0.9848 1.100 0.9847
0.2000 0.9849 1.600 0.9647 1.000 0.9847
0.1500 0.9849 1.400 0.9847 0.9001 0.9646
0.1000 0.9851 1.200 0.9846 0.8001 0.9848
0.0000 0.0000 1.000 0.9846 0.7001 0.9846
0.0000 0.0000 0.9001 0.9846 0.6001 0.9844
0.0000 0.0000 0.8001 0.9845 0.5001 0.9843
0.0000 0.0000 0.7001 0.9849 0.4501 0.9844
0.0000 0.0000 0.6001 0.9843 0.4000 0.9845
0.0000 0.0000 0.5001 0.9844 0.3500 0.9845
0.0000 0.0000 0.4001 0.9841 0.3000 0.9845
0.0000 0.0000 0.3001 0.9841 0.2500 0.9849
0.0000 O.000 0.2501 0.9844 0.2000 0.9850
0.0000 0.0000 0.2000 0.9849 0.1500 0.9851
0.0000 0.0000 0.1500 0.9851 O.OOE 0.9865 P
0.0000 0.0000 0.1001 4.234 0.0000 0.0000

AI
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_ 3rd 4th 5th
T T T

3.831 0.0000 2.873 0.0000 2.299 0.0000
3.824 .07248 2.869 .09512 2.296 0.1171
3.808 0.2093 2.860 0.2664 2.290 0.3185
3.800 0.2651 2.854 0.3519 2.286 0.4144
3.700 0.6640 2.800 0.7295 2.200 0.9187
3.600 0.8238 2.700 0.9145 2.100 0.9748
3.500 0.9005 2.600 0.9624 2.000 0.9839
3.400 0.9400 2.500 0.9777 1.900 0.9855
3.300 0.9609 2.400 0.9830 1.800 0.9857
3.200 0.9722 2.300 0.9848 1.700 0.9858
3.100 0.9784 2.200 0.9854 1.600 0.9854
3.000 0.9818 2.100 0.9855 1.500 0.9853
2.900 0.9838 2.000 0.9855 1.400 0.9852
2.800 0.9846 1.900 0.9854 1.300 0.9851
2.700 0.9851 1.800 0.9853 1.200 0.9850
2.600 0.9853 1.700 0.9852 1.100 0.9850
2.500 0.9854 1.600 0.9851 1.000 0.9849
2.400 0.9854 1.500 0.9850 0.9501 0.9849
2.300 0.9853 1.400 0.9850 0.9001 0.9849
2.200 0.9853 1.300 0.9849 0.8501 0.9849
2.000 0.9851 1.200 0.9849 0.8001 0.9649
1.800 0.9850 1.100 0.9848 0.7501 0.9848
1.600 0.9849 1.000 0.9848 0.7001 0.9848
1.500 0.9849 0.9501 0.9848 0.6501 0.9848
1.0 0.9848 0.9001 0.9848 0.600 0.9848
1.300 0.9848 0.8501 0.9848 0.5500 0.9848
1.200 0.9848 0.8001 0.9848 0.5000 0.9848
1.10 0.9848 0.7501 0.9847 0.4500 0.9848
1.000 0.9847 0.7001 0.9847 0.4000 0.9847

0.9001 0.9847 0.6501 0.9847 0.3501 0.9847
0.8001 0.9847 0.6000 0.9847 0.3000 0.9847
0.7501 0.9848 0.5500 0.9847 0.2500 0.9851
0.7001 0.9847 0.5000 0.9847 0.2000 0.9852
0.6501 0.9846 0.4500 0.9847 0.1500 0.9846
0.5001 0.9846 0.4000 0.9847 0.1000 0.9849
0.5500 0.9846 0.3500 0.9846 0.0000 0.0000
0.5000 0.9846 0.3000 0.9846 0.0000 0.0000 -
0.4500 0.9846 0.2500 0.9851 0.0000 0.0000
0.4000 0.9849 0.2000 0.9846 0.0000 0.0000
0.3500 0.9846 0.1500 0.9847 0.0000 0.0000
0.3000 0.9845 0.1000 0.9849 0.0000 0.0000
0.2500 0.9844 0.0000 0.0000 0.0000 0.0000 w'.

0.2000 0.9837 0.0000 0.0000 0.0000 0.0000
0.1500 0.9853 0.0000 0.0000 0.0000 0.0000
0.1000 0.9856 0.0000 0.0000 0.0000 0.0000

5,-,

Nt

N.

-'p ', ~. S .. -. % % * . N ~



-1.10-

In order to perform the RT integration that propagates the FE results across the

oceanic portion of the path sets of Green's functions must first be calculated for each

distance at which the seismogram is to be examined. It should be noted that these

Green's Functions are not identical to those used in the tests above. Since the propa-

gation path has an oceanic crustal structure a different set of modes appropriate for an.

oceanic structure rather than a continental one must be used to determine the Green's

functions. Since the oceanic crust is thinner than the continental crust the modes

tend to concentrate at higher frequencies. Thus, more (eight) higher modes were used

in the oceanic mode set than in the continental mode set. This does not give complete

coverage in the period range considered, but should give an adequate Green's function.

To illustrate the effect that the oceanic propagation has on the FE results sam-

pling a wavefield that has already propagated through a transition region three sample

distances, from FE node to receiver, of one hundred, two hundred and fifty, and one

thousand kilometers were chosen. Mode sum Green's functions for receivers at the

crustal surface and sources where the FE displacements and stresses were recorded

were calculated to be used in the RT integral. The seismograms resulting from the

RT integrations are illustrated in Figure 19. In this figure the RT integration results

for the two shortest paths are compared to FE results at the same locations with

respect to the source. The result for the longer path is also shown below the upper

two pairs of seismograms. In each of the pairs of illustrated seismograms the upper

trace shows the FE result. This result includes propagation through an oceanic path

length of 125 km, for the upper pair, or 275 ki, for the lower pair. These seismo-

grams are taken from the reverse reference model FE calculation which uses a column

of nodes recorded in the fifty kilometer forward transition calculation as forcing func-

tions. Displacements and stresses recorded at the same horizontal distance from the

source as these forcing functions are used as the u2 , and Au2 ,1 , terms in the RT

-1
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integration. The seismograms resulting from the RT integration of these terms with

Green's functions for propagation through a path length of oceanic structure are

shown as the lower seismograms. The upper pair of seismograms is for Green's

functions for a one hundred kilometer path length, the lower pair for a Green's

function path length of two hundred fifty kilometers. The numbers to the right of,

each pair indicate the RMS amplitude ratio of the upper seismogram to the lower one.

The upper pair of seismograms shows reasonable agreement. At least half the

difference between the two traces could esily be due to truncation errors caused by

terminating the integration surface at 35 km depth. The remaining differences in

amplitude and waveform can be explained as being due to a small component of non-

modal energy which is filtered out of the result when using the RT integration but not

when using the FE method. Thus, this pair of seismograms shows that after

propagation through 125 km of oceanic path most of the non-modal energy is no

longer visible at the surface. From the FE calculations whose time slices are shown in

chapter two it is clear that at this distance some of the non-modal energy is still

present at depth. This energy is probably a source of the amplitude discrepancy

between the two uppermost seismograms. The lower pair of seismograms shows

excellent agreement in amplitude but discrepancies in waveform for all but the initial

arrivals. This is expected since the FE result is contaminated with small reflections

from the nearby grid edge that can change the waveform significantly but have been

shown to change the RMS amplitudes by at most a couple of percent. Thus the

amplitude agreement at this distance implies that the non-modal energy remaining at

depths included in the integration is not significant. However, the remaining

amplitude of the Lg phase is still fifty five ro seventy percent of the incident

amplitude. Using longer transitions this can be reduced another five to ten percent,

and adding the effects of intrinsic or scattering attenuation, which are not considered



in the calculations presented here, might produce a further small reduction in the the

Lg wave amplitude. Thus, it is apparent that the attenuation due to passage through

a transition region is not sufficient to explain the entire observed attenuation of Lg

waves.

In conclusion, the FE results show several effects which are significant mecban--

isms for the attenuation of Lg as it passes through ocean continent or continent ocean

transition regions. The most important of these effects, associated with the path

length of oceanic structure, is the transmission of energy across the crust half-space

boundary in the forward transition region and the conversion of that energy into

downgoing non-modal phases. As the length of the oceanic path increases the ampli-

tude of these downgoing phases increase and they are able to propagate far enough

towards the base of the grid that they are not transmitted back into the crustal layer

through the half-space crust boundary in the reverse transition region. The FE results

illustrated in this chapter show that significant portions of the energy originally

trapped in the continental crust can be carried out of the system in this manner. The

RT integration results show that, for a 125 km path length, much of the downgoing

energy has pased out of the depth region above the base of the continental crust, and

that after propagation through an oceanic path of length 275 km the non-modal

energy has become negligable. The attenuation of Lg passing through the reverse

transition should be maximal for path lengths in excess of that length at which the

non-modal energy has reached depths below the base of the continental crust. The

oceanic path length necessary for complete escape of the non-modal component of the

wavefield is on the order of 200 to 250 km but significant portions of the energy is

able to escape for path lengths as short as eighty kilometers. The results presented

here are for a fifty kilometer long transition. Since a longer transition region produces

more rapid downward propagation these lengths should be expected to be an

5%
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overestimate of the observed Lg data which is on average associated with longer tran-

sitions. However, the amount of attenuation seen in the Lg phase is not large enough

to explain the observed attenuation of Lg. These simple models show that geometry

of the transition region alone produces at most a reduction of a factor of five or six in

amplitude. Thus, the observed attenuation, which has. frequently been attributed to-.

the propagation effects caused by passage through a transition, cannot be entirely due

to these propagation effects.
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